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Diffkrenzialrechnuiig
worin ausser den Zusätzen und Berichtigungen, auch 

noch andere nützliche analytische Untersuchungen, 
welche größtentheils die kombinatorische Analys 

sis betreffen, enthalten sind,

Königl. Professor der Mathematik am CadettencorpS m Berliss,





Vorrede.

-7-^er Inhalt dieser Schrift, ist zwar keine lec- 
türe für Anfänger, aber doch bei weitem noch 
nicht das schwerste, das die Analysis geben kann. 
Ueberdem braucht und soll der Inhalt nur demjenigen 
durchaus verständlich seyn, der'das größere Werk des 
Herrn Euter zu studiren unternimmt. Indessen wer­
den meine Leser doch einzelne Materien finden, die ein 
Ganzes ausmachen, und andere Sahe mehr, welche 
man, ohne vorher Euters Differenzialrechmmg ganz stu- 
dir t zu haben, verstehen kann. Dahin gehören Seite 
iZ5 —• 216 das System der allgemeinen Dif­
ferenzen und Seite Li6 — 233, einige mer k- 
würdige Sahe und'Relationen, ferner^Seite 
233 bis zu Ende, Hindenburgs Theorie der 
kombinatorischen Analysis. Ich glaube daß 
ich überall so deutlich bin, als es der Gegenstand er­
laubt, und dre Kenntnisse, die ich mit Recht voraus-' 
sehen darf, erfordern. Herr F 0 n t a n a hat von Eulers 
Werke Ihlhtutiones calcüli difrerenrialis eine neue 
Ausgabe Ticini 1787 in quarre besorgt, und in dieser 
Ausgabe findet sich Seite 705 der Aufsah ü6ir I n er- 
plicabeln Funktionen. Die Zusahe von Hrn. 
Fontana hatten wohl beträchtlicher seyn können, aber 
es hangt nicht immer vor. dem Schriftsteller ab. wel­
che Ausdehnung er seinen Arbeiten geben will. Wenn 
man mehrere in gewisser Hinsicht verschiedene Mate-
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B o r r e d e.

rien in einem Bande giebt, so darf man hoffen, mehr- 
rere leser zu befriedigen und ihnen nützlich zu 
werden. Dieses letztere ist wirklich meine Ab- 
sicbt gewesen. Das System der allgemeinen 
o d e y e n d l l ch e n D i f f e r e n z c n ist, soviel ich weiß, 
noch nirgend so ausführlich und strenge be­
wiesen worden. Der verehrungswürdige und 
gelehrte Greis, Herr Hofrath Kastner, und der für 
die Wissenschaften viel zu früh verstorbene Karsten 
haben in ihren allgemein bekannten vortreflicsien 
Schriften über die Analysis, nur ein paar einzelne Sä­
tze davon, ohne DiffereNtialien erwiesen, die nach ihren 
Systemen einen solchen Beweis nöthig hatten. Des 
Herrn Professors Busseu's Abhandlung über diesen 
Gegenstand in den von mir oft-genannten Beytras 
gen, war daher gewiß ein sehr angenehmes und will­
kommenes Geschenk, und was nun noch hierbei) in 
Hinsicht auf die bequemste Bezeichnung und auf Vol­
lendung zu wünschen übrig blieb, denke ich hier gelei­
stet zu haben»

Die Arbeit des Bürger Prony im Journal 
polyrechnique über endliche Differenzen, die ich erst 
nach Vollendung meiner "Arbeit sahe, und also nicht 
benutzen konnte, steht, wenn ich als competenrer Rich­
ter sprechen darf, in vieler Hinsicht, vorzüglich in 
Strenge und Ausführlichkeit der Beweise meiner Ar­
beit nach. Die Zeit wird lehren was der Herr Pro­
fessor Kos man n der eine Uebersetzung mit Zusätzen 
davon versprochen hat, leisten wird.

Da ich die meistenWerke in meinerWissenschaft nie 
anders als mit der Feder in der Hand lese, so kann es 
bey ausdauerndemFleißeund bey meinemEnthusiasmus 
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Vorrede. v
für die Wissenschaft, nicht fehlen, daß ich auf einige 
neue Vorstellungsarten, Beweise und Säße gekom­
men bin, — dieses ist die Entstehung der merkwür­
digen Sahe und Relationen. ■— Im 6sen 
Hefte des Hindenb u rg ischen Archivs der 
Mathematik 1797, Seite 16 r steht ein Aufsatz 
von Herrn Buzengeiger, der einige Sahe mst 
dem meinigen gemeirr hat. —- Giebt aber Simplici­
tät und Leichtigkeit den Beweisen Vorzug, so glau­
be ich, daß mein Beweis vorn Herrn Lagrange’s 
Sahe ihn verdient. Das; ich nicht mehr fescher Säße 
hier mitgetheilt habe, bcweißt nicht, daß ich nicht 
mehrere besitze. — Ich habe wirklich davon noch eine 
große Anzahl , und hoffe zu ihrer Bekanntmachung 
Ändere Gelegenheit zu finden.

Jetzt komme ich Zw der über alles lob erhabenen 
H indenb ü rgi-schen, Erfindung — Was ich hier 
davon fast wörtlich nach Hindenburg gebe, ist hinläng­
lich meine Anwendung derselben auf das wichtigste Pro-^ 
blem der ganzenAnalysis ncmlich den p 0l y n 0 m i sch en 
Lehrsatz, der noch nirgend so weit dargestellt gefunden 
wird, verständlich zu machen. Wer dieses aufgewöhnli- 
chen Wegen d e p e n d e n t leisten wollte, würde gewiß 
mit seinemVerstande Gefahr laufen, und doch amEndc. 
nicht vor Rechnungsfehlern sicher seyn — die combinato- 
rische Methode übertrift jede andere, an Allgemein­
heit und Leichtigkeit, giebt, was nach andern Me­
thoden nur selten der Fall ist, die verlangten Glieder 
unabhängig von den vorhergehenden, und giebt bey den 
verwickelsten Untersuchungen, in die Augen fallen­
de Gesetze. — Sie bietet für eine Vorrede viel zu 
vielen Stof dar, und ich bin gezwungen ihre Lobrede 
hier zu endigen, aber einen Jedem ersuche ich sich sa 
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vi Vorrede.

nicht durch die wenigen neuen Zeichen vorn Studium 
derselben abschrecken zulassen, der Nachtheil des un­
terlassenen Stpdiums ist unendlichemal größer- als die 
kleine Mühe die es erfordert. Da diese Schrift, 
als Supplement zu Eulers berühmten Werke, wahr­
scheinlich manche Käufer findet, 'W Hindenburgs 
unschätzbare Schriften nicht besitzen, so hoffe ich dem 
Wunsch des ve'rehrungswürdigen Erfinders gemäß, 
hierdurch viel zur Ausbreitung und Bekanntmachung 
per combinäto r'i'schen Analysis beyzutragen, 
auch werde ich künftig gewiß keine Gelegenheit vor» 
beylaffen sie psiichtniaßig nach Kräften zu verbreiten 
dieses sind nnr. als Deutsche, dem gelehrten Er­
finder schuldig.

Möchte ich doch meinen Zweck'nicht verfehlt ha­
ben, und zur Belohnung die Erfüllung meines Wun­
sches sehen. Berlin, den iterrSeptember 1797*

Grü so n.



Vorrede. vn

Torerinnerung der Zusätze welche sich bei­
der von Fcmkana besorgten neuen latei« 

Nischen 'Ausgabe von Eulers Diffe- 
renzialrechnung findet.

Der Druck dieses Werks, war beynahe geendet, als 

der berühmte Joh. 'Albert Euler, Sohn unsers 
Versagers, und geheimer Sekretar der Petersburgs 
scheu Akademie uns in Begleitung eines Schreibens, 
an den Professor der höhern Mathematik, Georg 
Fontana, der ihm dazu aufgefodert hatte, die 
noch nicht bekannte aber vollständig ausgearbeitete 
Abhandlung seines großen Vaters, schickte, deren 
Titel folgender ist: Beleuchtungen der letz- 
rern Capitel, meiner Diffcrenzialrech- 
nung, von den inepplicabeln Funktionen.

C’est avec bien de plaifir (sagt H. Joh. Al- 
bert in diesem Briefe, aus Petersburg vorn i8ten 
Dezember, des nachsiversiossenen Zah es 1787), 
que je vous envoie la copie ci-jointe du me- 
moire de feu mon Pere sur les Fondbons in- 
explicables, que votie ami er eleve fouhaire 
de faire entrer dans la nouvclle edition qu’il 
va publier du calcul diffcrentiel. Je vous l’au*  
rois expedie pluror ians la grande difficuke 
&c. Es ist diese aber eine, von den ig j hin­
terlassenen Dissertationen, welche der unsterbli­
che Leonhard, der Petersburger 'Akademie, bey sei­
nem Tode zurückließ, und sie in ihren Commenta­
rien herauszugeben, verordnete. '

Nichts konnte sich für uns erwünschteres er­
eignen, als daß diese neue Ausgabe, des Euler- 
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schen Werks, theils zu so gelegener Zeit, theils 
mit einem so vortreflichm Zusatz, vermehret ward, 
und nicht minder zur, Ehre Berlins, gereichet. 
Wir besorgten daher sogleich, den Druck der Dis­
sertation selbst, damit die Anmerkungen, welche 
derselben folgen, gleich einer geringern Kost, auf 
die herrlichsten Mahlzeiten, mit Nachsicht ausge­
nommen werden möchten. Hiermit empfehlen wir 
dem geneigten Leser, unsere Bemühung die aus der 
besten Absicht herrührt»

Beleuch-



Beleuchtungen
der letztem Kapitel meiner Differenzialrechnung.

----------- ;------------- ?
Von den inexplicabeln Funktiottett.

r,
<Fx
wo. dieses Argument, welches in Ansehung der Ana- 
lysis, gänzlich neu ist, noch niemals deutlich genung, 
zergliedert worden ist, so habe ich beschloßen, dasselbe 
mit größerem Fleiß zu behandeln, und alle Momente, 
aus denen es entspringt, aus den ersten Prinzipien her­
zuleiten, wobey es vorzüglich, von großem Nutzen seyn 
wird, wenn man sich geschikter Zeichen, im Kalkül be­
dienet. Wäre demnach irgend eine Reihe gegeben, de­
ren Glieder mit den Anzeigern i, 2, 3, 4 re. Überein­
kommen, so werde ich selbige mit diesen Zeichen (i),
(2),  (3)/ (4), rc. darstellen. Es würde daher, das 
Hauptglied dieser Reihe, welche mit dem unendlichen 
Anzeiger x, übereintrift, bey mir (x) seyn, und also 
für jede Reihe, x die Funktion derselben, die ich »als 
gänzlich bekannt annehme, und zwar dergestalt gegen 
einander gehalten, daß die Werthe derselben, nicht al­
lein für ganze Zahlen, statt x angenommen, sondern auch 
für gebrochene, und selbst für irrationale gelten können.

2. Ferner bedeutet s: x, ein summatorischesGlied 
Eben dieser Reihe, welches die Summe der Glieder, 

vom ersten an, bis zum letzten (x) ausgedrückt, so daß 
2 ; X -- (I) f (2) f (3) t (4) t - t t f (x), 

A deren 



s Beleuchtungen der letztem Kapitel 

deren sämmtliche Werthe also, so oft x eine ganze positive 
Zahl wird, aus dieser Reihe, sogleich dargesrellt wer­
den können, und zwar wie hier folgt':

z : i = (i)
s : 2 =3 (t) t (2)
x : 3 = GO t (2) f (3)
x: 4 =; (1) f (2) t (3) t (4) u. st tv.

Daß dergleichen Werthe aber, auch unter der Formel 
3 : x vorgestellt werden könnten, wenn man statt x ge­
brochene, oder irrationale Zahlen, sowohl positive, 
als negative gebrauchet, erhellet dieserhalb keineswe- 
ges; daher rechne ich diese Werthe, zu einem besondern 
Geschlecht von Funktionen, welche ich die inexplica- 
beln genannt habe. Auf welche Art nun dergleichen, 
durch analytische Formeln bestimmter Funktionen, aus- 
gedrükt werden können, will ich hier zuförderst darthun.

3. Dieses ganze Geschäft aber, kann am bequemsten, 
durch stetige Differenzen, aus einer vorgegebenen Reihe 
hergeleitet, verrichtet werden, wenn nehmlich jedes 
Glied, vom folgenden abgezogen wird; hieraus ent­
stehet sodann, die Reihe der ersten Differenzen, auß 
gleiche Weise die der andern, dritten, vierten u. s. f. 
Alle diese Differenzen, bezeichne ich auf folgende Art.

ite Differenzen

(2) — (1) = Ai
(3) — (2) = ZX2
(4) *~  <3) = A 3
(5) H(4) = A4

«. s. w.

Ute Differenzen

A2—Ai= A2i
A3—A2= Aa2
A4—A3= A23
A$—A4= A24

u. 5 w.

nite Differenzen

Aa2—A2i=A?i
A23—Aa2= A’a
A24—A23=A’j
A25-A24=A’4 

rr , s. w.

4. Nach-
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meiner Differenzialrechnung. 3

4. Nachdem diese Bezeichnung festgesetzt worden, 
konnten die einzelnen Glieder der Reihe aus dem ersten 
O) und dessen Differenzen A^, A2i, A3i, A4i, 2c. aus- 
gedrükt werden. Denn da

5. Vermehren wir hier diese Zahl n, um die Ein­

heit, so bekommen wir (n t i) ---- (1) t ~ Ait y ♦

■------ A21 f — ♦ --------. --------A' 11 rc. Da nun be-
2 1 2 3

reits dieser letzte Ausdruck, dasjenige Glied ausdrückt, 
welches von dem ersten, durch n Stuffen x entfernt ist, 
so wird auf ähnliche Weise, auch das Glied, welches 
vom zweyten, durch eben so viele Stuffen vorgerückt ist 
(nt2) aus dem andern", und dessen Differenzen, be­
stimmt $ denn es wird:

(2) = (1) t Ai, und A2 ----- ArtA2 I, auch (3) 
= (2) f A 2, so wird (3) = (1) t 2 A 1 f A3 1, da­
her fließt hieraus schon jene Gleichheit A 3 = A 1 t 2 
AJ1 f A’ 1. Weil jetzt (4) =(3)f A 3, so wird man 
haben (4) (1) 13 A 1; f 3 A21 f A3 1. Hieraus
fließt ferner: A4=Ait3A2 if3 A’ ifA4i, da auch 
(5) = (4)tA4, so wird (5) = (1) t4A 116 A2 if4 
A5 * 7 if A*i z und so ferner seyn. Aus der Bildung die­
ser Formeln selbst erhellet, daß hier eben dieCoeffizien- 
ten Vorkommen, die man in der Binomialpotenz erhält, 
deren Exponent um die Einheit kleiner, als der Index 
des vorgegebenen Gliedes ist, folglich wird

(n)=d)t — Als—1. —2 A’ Jt — .
1 i 2 1

As (n 12)



4 Beleuchtungen der letztem Kapitel

„ , . . n A Tn n — i n n — i
(n 15t) = (2) 17 A 2 f 7 ♦ _ /V 2 f 7 ♦ —~ -

p — 2
------ - A?2f zc. seyn. Auf eben diese Art ist es äugen- 

3

scheinlich, daß auch seyn werde (n f 3) = (3) f 7 A

(n+4) = (4) 17 ." A411 * 4“1 4t 7 ‘

A’gftc.

n— 2 . , ,
■-------A'4t2C.

3

6. Hieraus ist klar, daß wir das allgemeine Glied 
(x) unserer Reihe, aus dem ersten und dessen Diffe­
renzen, auf folgende Art erklären können:

(x) = (t)t^7-1 Als Y"1

X---- -Z\? if 2C.
3

daher wird das, dem letzten folgende Glied (x f 1), 

dieses seyn:

A1112C;
Da dieser Ausdruck im folgenden am öftern vor- 

kommt, so wollen wir der Kürze wegen, folgende Be­

zeichnung einführen:

x



meiner Differenz ialrechnung. 5
X
I x

x X—_T
I 2
x X— I X— 2  u
i"‘ ~ * 3 X

— . ------- . ------- . ----- -  E3 XZZZ u. s. w.
12 3 4
nach deren Anwendung, werden wir folgende Gleichun­
gen haben:
(x f 1) = (1) f x A 1 f xz ZV 1 t x" A3 1 + 2C.
(x f 2) = (2) t x A 2 t xz A121 x/z A3 2 f rc.
(x t 3) = (3) i*  x A 3 t xz A2 3 t xzz A3 3 t2C.
(x f 4) e= (4) f x A 4 f xz A2 41 xzz A3 4 12c.

(x t n) =3 Cn) t X A n t xz A2 n t xzz A3 n f rc.
7. Hierauf werden auch die Summen, jeglicher 

Glieder unserer Reihe, aus dem alleinigen ersten Glie­
de, und dessen Differenzen, bestimmt werden können, 

wie folgendes Tafelchen zeigt:
3 : I es (1) 

add: (2) = (1) f A i

s : 2 = 2 (1) t A 1
(3) = (1) f 2 Alt Ae 1

2 : 3 = 3 Ci) 's 3 4 1 t A2 1

(4) = (1) t 3 A 1 t 3 A2 1 i*  A3 1

s : 4 = 4 (1) t 6 A 11 4 A2 1 t A3 1
(5) = (1) f 4 A 1 t 6 A2 1 f A3 1 A4 r

s : 5 = 5 (1) f 10 A 1 f 10 A2 1 tsA311A41



6 Beleuchtungen der lehtern Kapitel

Hiev ist wiederum augenscheinlich, daß die Coeffi- 
Zienten, eben diejenigen sind, welche in der Binomi- 
nalpotenz, in eben dieser Ordnung vorkommen.

8. Nach dem wir nun, die vorhin festgesetzten 
Bezeichnungen in Gebrauch aufgenommenchaben, so wol­
len wir auch dieses summatorische Glied unserer Reihe 
S : x, im Ausdruk gelten lassen. Es wird daher

z:xc=x(i)f xzZ\if *"  A2i t-x///A311 rc. seyn, 
welche Form schon dergestalt verglichen ist, so daß statt 
x, nicht nur ganze Zahlen, sondern auch gebrochene, 
und selbst irrationale, sie mögen positive oder negative 
seyn, angenommen werden können, in welchen Fällen, 
dieser Ausdruck sogar, bis ins Unendliche fortgehen wür­
de, wofern nicht die vorgegebene Reihe, endlich bis auf 
verschwindende Differenzen leitete. Diese Reihen pflegt 
man algebraische zu nennen, wo man in diesen Fallen, 
nicht auf inexplicable Funktionen gelangt. Unterdessen 
gewährt dieser, für das summatorische Glied, erfunde­
ne Ausdruk, wenn er ins Unendliche fortgeführet wird, 
keine Unterstützung, in sofern Differenziationen, oder 
Summationen anzuordnen sind; weshalb man es hier- 
bey beruhen läßt, gleichwie, wenigstens in gewissen 
Fällen, das erfundene, summatorische Glied in andere 
Formen übergehen kann, welche weder der Differen- 
ziation, noch Integration widersprechen; auch gehö­
ren hieher, alle diejenigen Hülfsmittel, welche ich bey 
der Differenzialrechnung, weitläuftiger gezeigt habe, 
deren Erfindung nicht wenig verworren war. Auf- fol­
gende Art aber, wird das ganze Verfahren sehr leicht seyn.

9. Zu dem vorhin erfundenen Ausdruck, des sum- 
matorischen Gliedes, s: x/'addire man mehrere, un­
ter folgender Gestalt enthaltene Formeln.

(n)
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(n)tx An-f-x'A3 n-^x" A3n-j-2c...— (xfn) 
obgleich deren Summen gleich Null sind, so drücken 
dennoch alle, so viel deren auch sind, wenn sie mit 2: x, 
in eins verbunden sind, das summatorische Glied aus. 
Man summire also für n nach und nach, alle Zahlen 
t, 2, 3, 4, 2C. so wird der ganze Ausdruck, nach den 
Vertikalcolumnen, mit den einzelnen Werthen x, xz, 
x", 2c, übereinstimmend, auf folgende Weise angeord­
net werden:

Allgemeiner 2lusdruck für das summatorische Glied.

x (1) -j- x' A1t xzz A3 1 f xzzz A3112C.
(1) t x A11 xzA2i t xz/ A311x<" A4112c.... — (x 11)
(2) txA2f xzA22txzzA’21xzzzA42f:c.... — (xf 2)
(3) f x A 3 f x'A23 t* zz A3 3 x"z A4 3 f 2c.... — (x 13)

(n) f x A n f xzA2n f xzz A3n f xzzz A4n f 20. ♦ (x f n)
io. Obschon die Wahrheit dieses Ausdrucks, kei­

nem Zweifel mehr unterworfen ist, so wird es dem ohn- 
geachtet nicht wenig helfen, denselben aus. der Form 
selbst, bestätiget zu haben. Man sammle nehmlich, un­
ter eine Summe die einzelnen Vertikalcolumnen, se 
wird die erste folgende seyn:
(i) t (2) t (3) t ♦ • ♦ * • * ♦ t (A) =s: ß 

Die andere Columne giebt:
x£(i)tAitÄ2tA3t..........................fAn]

Wenn nun
A1 = (2)—(1); A 2=(3) (2); A3=(4) — (3); ?< * 
so wird diese ganze Summe verkürzt in x (n f i).

Auf
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Auf gleiche Weise, wird auch die Summe beraten Co- 
lumne seyn
x' EA i f A2ifA22fA23t As4t..............f A’n]

und weil
A3i=A2—Ai;A92 = A3~A2 . . . . A2n=A 
Cnfl) —An»
so wird jene Summe zusammengezogen = xz A(nff). 
Auf eben diese Art erhellet, daß die Summe der vier­
ten Columne, seyn wird x" A2 (n i) die der zten = 
x'" A’ (n f i), u. s. f. Die Summe der abzuziehenden 
letzten Columne ist:
(xsl) t (x t 2) t (x t 3) t * . . . . t (xf n) = z; 
(x f n) — S : xt

ii» Die Summe aller mittlern Vertikalcolumnen, 
außer der ersten und letzten, ist also wie wir gesehen 
haben,

x(nfi)fx'A(nf I) f x^AXivI*  i) f x///A?(ntI)t 
Da aber x (i) f x'Ai fxzzA21 fxzzz A’ i f2c.=z: x, 
wenn nun die einzelnen Glieder, um die Zahl n ver­
mehret worden, so wird die Summe unserer Reihe seyn:

X (n t l) t xZ A (n t !) t x" A2 (n t l)t 2C. = Z:
(x t n) — z : n; 

folglich ist die Summe aller Columnen, außer der letz­
ten — z: (x f n); wenn daher die Summe der letzten 
Columne, s : (x t n) —- s: x, abgezogen wird, so 
bleibt die Summe der ganzen Figur = z: x, übrig, 
nehmlich das verlangte summatorische Glied.

i2. Am wunderbahrften wird es scheinen, daß wir 
den Werth der Formel z : x, welche durch eine einfa­
che Reihe, genugsam ausgedrückt werden kann, durch 
eine Nebenreihe unzählbarer Reihen, dargcstellt, und 

so
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so verdeckt gegeben haben; allein bald wird der Ge­
brauch, dieser äußerst verwickelten Formel, deutlicher 

werden, wenn wir die Zahl der Horizontalreihe, sogar 
bis ins Unendliche fortsetzen, welches geschehen wird, 
wenn wir für n, eine unendliche Zahl annehmen, wie 
jetzt deutlicher erkläret werden soll,

13. Bezeichnet man also, durch»eine unendliche 
große Zahl, so wird die Summe der zweiten Vertikal- 
columne, welche x (n f 1) ist, das unendlichste Glied 
unserer Reihe enthalten, und sollte dasselbe auch ver­
schwinden, so werden umso vielmehr, die Summen der 
folgenden Vertika^olumnen, sich verlieren, weshalb 

es in diesem Fall genung ist, bloß die erste Columne 
mit der letzten, im Calcul beybehalten zu haben. Ver­
schwinden hingegen die unendlichsten Glieder nicht, 
sondern waren sie unter sich gleich, alsdenn ist es er­
laubt, die dritte Columne, nebst den folgenden wegzu- 
werfen. Sollten aber die zweiten, unendlichen Diffe­
renzen verschwinden, so müssen die drey ersten Verti- 
kalcolumnen, in der Rechnung beybehalten werden, 
und eben so auch vier, wenn erst die ^dritten, unendli­
chen Differenzen verschwinden. Vermöge der Unter­
scheidung dieser Reihen, wollen wir dieselben, in fol­
gende Arten vertheilen.

Erste Art der Reihen
beten unendlichste Glieder verschwinden.

14. So oft also solche Reihen vorgegeben werden, 
f» ist es genung, für deren summatorisches Glied, die 
Glieder der. ersten und. letzten Vertikalcolumne- im 
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Calcul beyzubehalten, denn auf diese Weise erhalten 
wir für das summatorische Glied folgenden Ausdruck: 

s : x = (i) f (2) t (3) t (4) t rc.
— (x 11) — 2) — (x 13) — (x 14) — rc.

welcher unendlich fortgehet, und zwar um so mehr, je 
kleiner der Index war; verschwindet derselbe aber, so 
geht die ganze Reihe, in Null über, oder sie wird 
s : o = o, welche mit der Natur der Sache, vollkom­
men zutrifft; denn wenn die Zahl der zu addirenden 
Glieder, Null ist, so-muß auch nothwendig, die 
Summe Null seyn.

15. Wenn aber der Index x, eine sehr große Zahl 
ist, so nähert sich gewiß diese Reihe auch, nur wenig 
dahin, weshalb jederzeit dergleichen Falle, auf einem 
kleinern Index gebracht werden können; denn'da

s : (x f 1) = s : x (x f 1) so wird auf gleiche Art 
s : (x f 2) = s : x t (x 11) t (x f 2) seyn, und al­

so überhaupt, wenn i eine ganze Zahl bedeutet
3 : (x f i) = s : x f (x f 1) f (x f 2) t • • * i*  (x t i) 

Wenn man daher die Summe der Glieder x f i begeh­
ret, so ist es hinreichend, die Summe x der Glieder, 
d. i. s ; x erfunden zu haben. Auf diese Art, können 
dergleichen Fragen alle, auf die Falle eingeschränkt 
werden, in welchen der Index x, sogar um die Einheit 
vermindertest, in welchem Falle, die für s : x, vorhin 
gegebene Reihe, sich außerordentlich der Verschwin- 
dung nähert.

16. Eine dergleichen Reduktion, ist dann zuför- 
derft nothwendig, wenn der Index x, eine negative 
Zahl ist; denn, wenn
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$ : x = z: (x — i) f (x), so wird
s : (x — : X — (x) seyn, eben so auch
s : Cx —• 2) = z : x — (x) — (x — i), und
5: (x — 3) = 5; x — (x) — (x — 2> und über­

haupt
s : (x —i)=s:x—(x) — (x—1)... — (x— if 1) 

und auf diese Art, als viel die negative Zahl x — i, 
größer war, kann die Auflösung jederzeit auf 2 ; x, ge­
bracht werden, so daß x < 1 sey.

Beyspiel.
17. Es sey folgende Reihe gegeben:

i-H t Itl 111 ♦ * ♦ - = s :x
X

Es wird die Summe der Glieder X, in dieser Harmonie 
scheu Reihe verlangt, wofür x jede, ganze positive Zahl, 
angenommen werden, und zwar hat alsdann für die 
Falle, wo x tone ganze positive Zahl ist, die ganze 
Sache, keine weitern Schwierigkeiten. Es wird da­
her in diesem Fall, nach vorhin gegebenen $orm seyn: 

r 1 t 1 t < t 112c.
s : x == |____ 1_____ 1_______ 1______ i__

L x f I x 2 x f 3 x f 4
werden diese beyden Reihen, in eine zusammengezogen

X X , X X
3 : x =3-------- +------------- - T  -------—— T —   4*  icX t I 1 2(xf2) 3(xt3) 4(xt4)T2 *

so ist alsdann, die?Sumcke der Reihe, von selbst klar, 
sm oft nehmlich x, eine ganze positive Zahl war; also 
«uch;

Wenn
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X

xX

also wirb die Gleichung unter je zween Coordmaten, 

seyn:

i

3
4

(1) — i
(2) = 1
(4) = 11111
(4) = 111111rc.

x~3

, 1 1
'2 <2 '

18. Damit dieses deutlicher verstanden werde, wol­
len wir eine Curve bilden, deren Abseissen 0 x — x, 
mit der Applikate x y = y = s : x übereintreffen, so 
daß nach denen, über derApcox, angenommenen 
Intervallen, welche um die Einheit gleich, o, 1; 
1,2; 2,3; 3,4, rc. die folgenden Applikaten seyn mögen.

Wenn

,1,1, 1...t ----t -----t -7 t 2C.
3.4 4-5 5-6

t — t — 14t
2.4 3-5 4-6

= £t_i 13 t M «.
1.4 1 2.5 3.6 4.7

f _£. = _£ 4 4 A. 4 t 2C.
4 1.5 1 2.6 1 3.7 4-8x=4

11. s. w.
welches die merkwürdigsten Reihen sind.

X X , X , X
y ------------- 4-------------- 4 -- ----------- 4--------------4 rc.

X t I 2(X t x) 3 (X t 3) 4(x t 4)

Aus
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Aus dieser Gleichung können also, alle mittlern Appli­
katen erkläret werden, und so ist es hinreichend für x, 
die um die Einheit kleinern Werthe, angenommen zu 
haben. Daher wenn die Applikate Z.. (-*)  der Abscisse 
0 .. z — 4 verlanget würde, so findet man

deren Summe auf diese Art, durch Logar thmen bezeich­
net werden könnte. Man bilde diese Reihe:

welche, wenn t = 1 angenommen wird, den gesuchten 
Werth giebt. Durchs Differenziiren aber, bekommt
man:

dy tt t4 t6 t8
— =? — f f f 2C» dt 1 1 2 1 3 1 4

und wenn von neuem Different: wird

^^ber wird Wechselsweise,
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seyn, diese zwiefache Integration, wird nach bekannter 
Art, auf eine gebracht, so ist

Weil aber nach der Integration, t = i gesetzt werden 
muß, so wird

seyn; deswegen wird durchs Integriren y=21—21 (t f 1) 
entstehen, in unserem Fall aber 7=2 - 2 l 2, dessen 
Werth der nachstwahre 0,61370564 ist.

19. Nachdem nun die Applikate der Abscisse, die 
mit 4 übereinkommt, erfunden worden, nehmlich x : Z 
r-- 2 — 2 l2, so können aus derselben, folgende durch 
die oben gegebenen Formeln, leicht abgeleitet werden, 

als:
x: 1
x: (2 f
x : (3 1I) f 7 t 2 : I 2C,

Damit nun auch die vorhergehenden Applikaten, die 
inj der Figur nicht ausgedrückt sind, aus der Formel 
x: (x — i) bestimmt werden können, welche wir fanden 
s: (x — i) = x : x — (x) — (x — 1) — (x — 2) . .. 
— (x — i 11) weil in unserem Fall X ---Z, so wird die 
Applikate s: (—i—2 =—2 t2, und zwar 
negativ seyn, welche sogar, wenn x — — 1 genommen 
wird, unendlich ist. Die unendliche aber, entspringet 
auch aus den Fällen x = — 2, x — z, x ----- 4 w. 
innerhalb diesen Intervallen aber, wird

5: —
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r:-(i tl) = s:I-2t2

x — (3 t i) = s : 5 —2f 2 —seyn rc.
20. Differenziiren wir jetzt, die für die Applikate 

y, erfundene Reihe so wird

aJ_ r + 1 + 1 .
dx (x f i)3 T (x t 2)3 (x f g)2 1

Daher drückt diese Reihe, die Tangente des Winkels 
aus, unter welchem das Element der Curve, in y sich 
zur Axe neiget; woraus erhellet daß diese Neigung, für 
die unendliche Abcisse, null werde, das ist, der Zug der 

Curve, gehet in Unendlichen parallel mit der Axe, folg­
lich wenn x = o angenommen wird, so bekommt man 
die Neigung der Curve selbst, bis zum Unendlichen ==

...
1 T 5 i* »'s i" es 1, 644,

6 
daher der Winkel = 58', 42 \ Wird aber x = i ange-

. .. d V , . , . tttt
nommen, foitt 7-=: 11 11 Äs ÄT2C*  = -7-----I =3 0,

dx 6 ’
644, wo die Neigung -- 320, 481 seyn wird. Fahrt 
man nun noch weiter fort, so nimmt die Neigung be­
ständig ab.

21. Gehet man aber rükwärts, bis zu den negati­
ven Abrissen, so haben wir bereits oben gesehen, daß 
unter denen Fallen, unter welchen x=—1, oderx-=—2, 
oder x — 3, die Applikate unendlich groß werden, 
und. eben so viele Curven, Assymptoten machen. Jetzt 

^ber wird es sich zeigen, daß an diesen Orten ~ j=j <w
dx 

wwb; und daselbst die Neigung der Curve 90°, oder 
bie Tangenten perpendikular nach der Axe gehen wer­

den.
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allezeit eine positive Summe hat, so folgt hieraus, daß 
alle Theile zur Rechten der Curve, anwachsen, die zur 
Linken hingegen, abnehmen.

22. Eben so auch werden wir, die Integration an- 
wenden, und die Fläche der Curve, vom Anfang bis 
zum Applikate x/, bezeichnen können. Denn aus der 

erftern Form, zu welcher wir geleitet wurden, folgt un­
mittelbar:

Jydx — I (i tx) — 1 (2 f x)—1 (31 x)—rc. T der 

Conft. welche immer dergeftallt bestimmt werden muß, 
daß in dem Fall x = o, die ganze'Fläche verschwin­
det, daher sie richtig«folgendermaaßen auszudrüken

Da nun

so kann der obere Ausdruck, durch folgende Reihen aus­

gedrückt werden:

23. Neh-
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-A3

24, Von

291678
066908
025368
OI2Z2I
OO6966
OO4366
OO294OO,

O,

0,
O,
0,
O,
O,

t A2

O,
O,
o,
O,
o.

o, 224770
041540
013047

005355
002600
001426

- A

4 2 1782
13 0104
063169
O 3 7828
025507

0,01 8541

014175
011235

O,
o,
O,
O,
O,
O/
o,

a) 0,822467
b) 0,400685
c) 0,270581
d) 0,207385
e) 0,169557
f) 0,144050
g) 0,125509
h) 0,111334
i) O,IOOO99 

tA4
0,183230
0,028493
0,007692
0,002755
0,001174

23. Nehmen wir nun alle diese Reihen, vertikal 
zusammen, so bekommen wir:
/ydx=|x2 (1 f -41 i t ä t 12C.) = t0,822467.x*

— T X3 (l.f I f f 2C.) = —0,400685.X*
t |X4 (I fÄ f Äs 2C.) = f O/27O58I.X4
— |x$ (1 f2c.)=—0,207385.x7

Nun nehme man x = 1 an, damir die Fläche 01 (1) 
herauskomme, und weil die hier gegebenen Dezimal­
brüche, sich nur wenig nähern, so bemerke man in je­
der Reihe, wo die Zeichen abwechseln, nehmlich :

S = a — b f c — d f e — 2C.
daß die Summe, sich durch fortgehende Differenzen, so 
ausdrücken lassen:

S=|a-|AaffA5a—^A’af 2C.;
alsdann kann durch Hülfe der Regel, die Rechnung fol- 
gendermaaßen eingerichtet werden:

ic»

— A* t Ac — A' tA8

o,i54737
0,020801
0,004973
0,001581

0,133936
0,015864
0,003356

0,118072
0,012508 0,105564
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24. Von diesen Columnen, deren erste ausderDrf- 
ferenzialrechnrmg Cap.vi. Theil II. Seite 365 *)  erkläret 
worden ist, geben die obern Zahlen das erste Glied a 
nebst seinen stetigen Differenzen, die andern aber in 
absteigender Linie, bringen das Glied b, nebst seinen 
Differenzen, und die dritten das Glied c, nebst seinen 
Differenzen. Da nun die obern Glieder, nur wenig 
convergiren, so nehmen wir die zwey ersten a — b 
jetzt wirklich zusammen verbunden, und dann wird 
a — b = o, 421782 seyn: Die Summe der folgenden 
aber c — d f e —- f f :c.

= -*  c — 5 z\ c 11 ZXa c — Ä ZV C f :e. 
Verfahren wir nun in der Rechnung, nach- dem gegebn
nen Gesetz, so wird

■5 c =□ 0, 135290
---- 4 A e =0, 015799
t 3 Aa c =0, OO3171

----  T5 AJ 6 32 0, OOO8l5
t Ä A4 C = O , 000220

— S-f A? • = O, 000077

•p A’ c = o, 000026
und folgenden = o, 000010

Summa =0, 155408
a — b — o, 421782
Fläche = o, 577190

Ich hoffe, daß eine weitere Entwickelung, dieser so 
merkwürdigen krummen Linie, niemanden mißfällig ist, 
besonders da die Gleichung für diese Curve, zu den in- 
epplicabeln Funktionen g-ehört, und ich glaube, daß 
eine Ueberschreituyg unseres Ziels, um eines besonde­
ren Falls willen, nicht unangenehm seyn wird.

Der deutschen Ucbelsetzutlg.^ S, '74.
Zweyte
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Zweyte Art der Reihen
deren erste Differenzen Lm Unendlichen verschwinden,

25, Zu dieser Art, gehören alle Reihen, deren un­
endlichsten Glieder unter sich, gleich sind. Damit wir 
also das summatorische Glied dieser Reihen s : x, aus­
drücken können, so ist nichts anders nöthig, als daß die 
Glieder der zweyten Vertikalcolumne der allgemeinen 
Form, welche § 9. dargestellt, zum Ausdruck der vor­
hergehenden Reihe, hinzugefügt werden, deren höch­
stes Glied besonders anzugeben ist; und weil die ein­

zelnen Horizontalcolumnen, schon aus drey Gliedern 
bestehen, so wird das begehrte, summatorische Glied 
3 : x, in folgender dreyfachen Reihe erörtert:

t (1) — (2) t (z) — (4) 
S:x =x(i) fxAifxÄ2fxZ\3txZ\41 

~ (x 11) — (x 12) — (xf3) — (xf4)j 
welche Form wegen Ai = (2)—(1); A2 =(3) —(2);

A 3 = (4) — (3); rc« in diese umgeändert werden kann: 

•fr^x(1) 11 — x(2) t i*̂x (3)] 

s:x =x (1) f x (2) f x (3) f x (4) > re.
— (x —1) ~ (x f 2) — (xf 3)J 

Diese Reihe convergirt um desto mehr, je kleiner man 
xzannimmt. Oben ist bereits gelehret worden, daß alle 
Fälle?, dahin reduciret werden können, in welchen x ein 
Bruch sey, der um die Einheit kleiner ist.

26. Nun wollen wir den allereinfachften Fall, zuerst 
"wagen, in welchem alle Glieder der Reihe, unter sich 
9lci<S sind, nehmlich (x) = a; denn es ergiebt sich von 
st'lbst, t>aß deren summatorisches Glied a x sey, dessen 
SöertO unser Ausdruck, jetzt darthun wird.

B 2 Denn
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Denn es wird s x = x a seyn:
27. Jetzt erwäge man auch den Fall, wo (x) = 

so daß unsere Reiher : x =
X X

sey; davon die unendlichsten Glieder, alle um die Ein­
heit äquiret werden müssen. Folglich wird uns unsere 
Formel geben

t I —Xi f I—-x^ t I —xsl
S;x = 2xf x I f x 4!

(x f 2) (x f 3) (x t 4) 21,

< xf 1 X-j-2 xf 3 J
Hieraus erhellet, wenn x = 1 betrachtet wird, z : x 
= S sey; nimmt man aber x = 2, so wird :

1 ' * • -
___ , *   5 6

r -4 cj

28. Dieser Fall aber, kann leicht auf vorhergehen­
de Art, reduciret werden; denn da das Hauptglied (x) 

= —so wird dasselbe in Theile aufgelöset, geben

(x) = 1 f-|-; diescrwegen bilde man zwey Reihen, und 

zwar die erste aus dem allgemeinen Gliede 1, die ande­

re aber aus dem allgemeinen Gliede werden sodann, 

diese beyden Reihen vereint genommen, so geben sie die 
verlangte Summe s : x ; es wird nehmlich 

ififitif.»............. t x
S : x = 1

seyn.
Da nun bereits, der obern Reihe Summe 2 ist, die
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untere hingegen, durch die erste Art>ntwickelt werden
kann, so bekommt man:

X t I t ’ t 1 t -r f rc.

2 . x _ _____ I________T I 1
— rc.

x tI xf2 x t3 X t4
obgleich dieser Ausdruck, viel einfacher ist, als der vor- 
herhergehende, so liefert derselbe nichts desto weniger, 
gleichen Werth, so daß wenn x = | genommen wird, 
so giebt uns der erstere Ausdruk

Werden nun diese Glieder nach der Ordnung verbun­
den, so wird

5'12 7.24 9.40 11.60
dessen Ordnung, aus folgender Form deutlicher seyn
wird:

Z|=if-------f —7 t —- t-----------t---------- t- sie«.
I.3.4 2.5.6 3.7.8 4.9.IO 5.II.12

Der andre Ausdruck aber, giebt folgende Reihen: 
-. 2 f | f-j t ? t2 . -3- —5 . 2

•  s   5'   7 S 2l*

welche zusammen geben werden:

r : 1 = | f | f — t -i- t — f :c.
2.5 Z-7 49

29. Aus diesem Beyspiele erhellet, daß die aus der 
zweiten Art, hergeleitete Reihe, mehr als die letztere 
aus der erstem, convergire, weshalb es der Mühe 
werth,eyn wird, die Convergenz der erstem Reihe, 
auf das aufmerksamste zu erwägen. Es entstehet nehm­

lich.
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Lich, jedes Glied dieser Reihe, aus diesen drey 
Theilen:

» N^I n f i2 an4- 3 
n 5 ‘ n f i an p V 

da sich selbige nun zunächst aufheben, so wird die Sum­
me der beyden erstem, am nächsten der dritten gleich 
tzyn, woher diese bemerkenswerthe Formel erfolgt: 

n * i n 41 2 _ 2fn * 3)

n n t 1 2 n t 1,
welches um so näher der Wahrheit kommt, jegrößerdie 
Zahl n war. Ziehet man nun beiderseits 2 ab, so wird

30. Eine solche Reduction, kann jederzeit nach der 
ersten Art statt finden, wenn die vorgegebene Reihe, 
zuletzt mit einem endlichen Werth eonvergirt; wenn 
aber die Glieder der Reihe, zuletzt unendlich zunehmen, 
so kann diese Reduction nicht weiter statt haben; und 
man muß sich nothwendig, an die zweite Art halten. 
Ein solcher Fall ist, wo (x) --- <x, denn wenn n eine 
unendliche Zahl bezeichnet, so werden je zwey benach­
barte unendliche Glieder, V*n  und V"n f i seyn, deren 

Differenz —ist, und also verschwindet. In die-
2 v n

fern Fall also, ist unsere Reihe
s:x = <itV"2f<3tV"4t**....tv rx 

folglich erhalten wir nach den gegebenen Vorschriften, 
diesen Ausdruck:

t 1
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11 — xV" 1 f 1 — xV" 2 f 1— xV*  3
z : x = x f xV"2 f xV"3 f xV"4 j, :c.

wie sehr nun diese Reihe convergict, sehen wir in dem 
Falle * = •§, also wird

t i /" 1 t 2 V*  2 f 3 f -5 <4 1
s : 4 = > f K2 f ^<3 f -«<4 f ’ <5 > 2C. sey«

— v*: — « — C—
davon jedes Glied ; V*n  f ; y7t~i — 

y --—seyn wird, daß also um so mehr, dem Nichts na­

her kommen muß, je größer die Zähln war, weshalb am 

nächsten V"n 'k Vn •f't = 1^2(211 ch 1). Werden hier­

von die Quadrate genommen, so erhalten wir
an f I t 2 Vn(n f i) — 2 (2n f i), also auch

2yn(n-j-1) — 2n f I. Nimmt man hiervon, von 

neuem die Quadrate, so wird4n n f 4n = 4nnf4nt 1, 
welches Verhältniß also, der Gleichheit am nächsten 
kommt. Uebrigens verdient hier bemerkt zu werden, 
daß die wahren Werthe, der statt x angenommenen 
Brüche, dergeftallt transcendent seyn werden, so daß 
man sie durch keine algebraischen Formeln, auszudrü- 
cken, vermögend ist. Also wird auch jeder für x ange­
nommene Werth, zu einem besondern Geschlecht,, von 
Transcendenten gehören.

31. Ehe wir diese Art verlassen, wollen wir noch 
rinen äußerst § wichtigen Lehrsatz, die Convergenz der 
Formeln betreffend, beyfugen, der noch weit allgemei­
ner ist, als das, was wir kurz vorher angeführet haben.

Lehr-
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Lehrsatz.

Folgende Gleichheit:

(ff»<(n *t  1)*=

nähert sich um so mehr der Wahrheit, je 
größer die Zahl n genommen, und zugleich

Exponent —, um die Einheit kleiner ist.

Es kommt aber diese Gleichheit, wenn »ne­
gativ genommen wird

ß — «e
t

V"n" V"(nf I)v V"(n t 1 ~~y
ß

der Wahtheit, ohne die letztere Bedingung, 
um somehr näher, jegrößer dieZahl n, und 

je kleiner der Bruchs war. Dieselbe kann 

auch, unter eben diesen Bedingungen, auf 
Logarithmen übergetragert werden, und 
zwar, daßtheils:

(S — -.) l n f 0 \ (n t i) = c ( (n t y) 



meiner Differenzialrechnung. 25 

Beweis.

32. Dieser Lehrsatz folgt aus der, für diese Art ge­
gebene allgemeine Auflösung, deren jedes Glied, aus 

diesen Theilen 1—x (n) f x (n f 1) — (n f x) be­
stehet, und um so kleiner wird, je größer man die Zahl 
n nimmt, die aus dem Bruche x, welcher um die Ein­

heit kleiner ist, entstehet. Setzen wir nun x = 4*  und
€

(x) =3 V*  x", als auch (n) — Vn", so ist nothwendig 

daß ~< 1 sey, weil sonst die unendlichsten Glieder, 

keine verschwindenden Differenzen haben würden. Diese 
Substitutionen aber, liefern jene erstem Formeln, wel- 

, che im Lehrsatz gegeben würden. Wenn man hingegen 

den Bruch y-, negativ annimmt, so wird die vorgege­

bene Reihe, alsdann in der ersten Art enthalten seyn, 
und also werden die unendlichsten Glieder selbst, in 
Nichts übergehen.

33. Damit nun der Sinn dieses Lehrsatzes, deutli­
cher verstanden werde, so muß bemerkt werden, daß diese 
Formeln genau, in vier Fallen mit der Wahrheit Über­
einkommen; nehmlich i.)wenn » == o, 2.) wenn«c--5; 
3.) wenn v = o; 4) wenn für n eine unendliche Zahl 
gesetzt wird; außerdem aber giebt es noch, einen zten 

Voll, wo in, der cvftern Form oder <u' --- n ist. ’

Dritte
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Dritte Art der Reihen/

deren zweyte Differenzen erst im Unendlichen ver­
schwinden.

34. Dies ereignet sich, so oft dieunenblichstenGlie­
der, eine arithmetische Progression machen, daher man 
die vorhin für 2: x, in der erstem Art gefundene For­
mel , auf diesen Fall auwenden kann, wenn noch über­
dies, die einzelnen Glieder der dritten Vertikalcolumne, 
hinzugefüget werden. Auf diese Weise kann das sum- 
matorischc Glied, folgendermaaßen ausgedrückt werden:

X (I) t (i) t (2) t (3) .»...f (n) 
t xAi t xZX2 t XA3 .....f x Ast 

3: x = xv A11 xz A411 x' As 21 Aa3 ... ♦. f x'/\2 n 

— (x t je)—(xf 2) — (xf3) ....— (x t n)
35. Jetzt wollen wir diesen Ausdruck, in eine zum 

Gebrauch mehr bequemere Form, verwandeln, j und 
zwar statt x, den Werth desselben * x — x schreiben,

2
alsdann aber wegen A n = (n f 1)— O) und Asn=s 
(n t 2) — 2 (n f I) t (n) setzen. Wenn nun diese Wer­
the subftituiret worden, so gehet die letztere Columne, 
der vorhergehenden Formel, in diese Form über:

(n) t X (n t (n.t 2)

— x (n) — xx — x (n f 1)

t -- ■■■»■ (n) diese Glieder zusammengenommcn,
2

geben:

~2 X (nf l)t ~-------(n ^2).
2 2

Se-
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Xx : x =

x x — 2 x = q und —— = r, so kann das ver-
2

langte summatorische Glied, in folgender Form ausge- 
drückt werden:

3 x---XX XX — X
-■—2----- -(Dck—-— (-) ,

t P (I) — q (2) t r (Z) — (x f i) 
f P (2) — q (3) t r (4) — (x t 3) 
t P (3) — q (4) t r (5j — (x t 3) 

daher convergirt diese Reihe außerordentlich.
36. Hieraus können wir nun einen neuen Lehrsatz^ 

der dem vorhergehenden ähnlich, aber weit deutlicher 

ist, herleiten, indem wir wie vorher xe= ~ , (n) « 

<n* setzen, wo es schon genug ist, wenn der Exponent
V

— zwiefach kleiner; um so mehr aber stehet es frey, die, 
s*
fen Exponenten als negativ zu nehmen. Dieser Lehr­
satz lautet:

D iese Gleichheit
f«

(**  — V"nv—(2** —4«eS) V" (n f i)*  f

„ P v F fn 4 ~ \

^ird der Wahrheit deftomäher kommen, je 

die Zähln, |unfr der Bruch nur we- 

rüg von dep Einheit unterschieden, und 
fA 

zwib
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zwiefach kleiner ist. Wird aber p negativ 
genommen, so ist selbige weit genauer. 
ax — 3 et € 2 € € 2«« — 4 -- 5 «—-«C  2%%

V"n' V(n fl)' <(n t -)' <Vn ty)

Auch können statt der Wurzelformeln, Lo­
gar l t h m e n angenommen werden.

37. Die Wahrheit dieses Lehrsatzes, wird auch durch 
folgende vier Fälle bestätiget: I, ----- o; u. ----- 5; 
III.» == o. IV. n ---- oo. Welches überdies ebenfalls ge­
schiehet, wenn nach der erstem Form, entweder > --- p,

p v
oder v -- 2 5«, so daß n" entweder n oder nn. Folg­

lich bekommen wir sechs Fälle, nach denen dieser Lehr­
satz, nicht im geringsten von der Wahrheit abweicht, 
woraus leicht zu verstehen ist, daß unter allen übrigen 
Fallen, der Irrthum nicht merklich seyn könne.

38. Diesen Lehrsatz können wir noch allgemeiner 

machen, indem wir statt n, — setzen, und allenthalben
c

mit der gehörigen Potenz c, multipliziern, wodurch 
die Brüche gehoben werden. Auf diese Art wird die er­

stere Form seyn:
p ’p

(**  — 3 x £ f 2 £ £) V” n*  — (2-t-L — 4«5) V*  (n f c)’ 

t («»—*6)  <(nf2c)v = 2b^ Die an-

ldere Form aber, weicht von dieser nicht ab, als in so­
fern, daß die Wurzelausdrücke in den Nenner überge­
hen, welches auch von den Logarithmen zu verstehen ist.

39. Diesen Lehrsatz wollen wir, mit einem Beyspiel 
erläutern. Es sey also ----- i und 5---2, so werden
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die in jenem Lehrsatz enthaltenen Gleichheiten, folgen­
de seyn.

F F F F
3 V"n*  f 6 V*  (nf c)’ — V*(nf  2c),= 8 V" (nf ' c)*

W V" (nfl)' V” (n f 2/ V" (n f
Wenden wir die erstere Form, auf'Logarithmen 

an, so wird 3 In f 6 t (nfc) — I (nf2c) = 8l(nt -’-c); 
nun sey n = 10 und c = 2, so bekommt man:

3 {10 f 6 f 12 — { 14 = 8 111.
Nach geschehener Entwickelung erfolgt:

3 t 10 = 3,0000000 
6 l 12 --- 6,4750872

9 47508-7
l 14 = 1,1461280

8 111 =□ 8,33114.16

9,4772696
Also ist die Differenz bo» (14 f 8 1 n u.3 tio f 6112 = 

0,0021824, die um so kleiner herauskommen würde, wenn 
man der Zahl n, einen größer» Werth beylegen wollte.

40. In Ansehung des summatorischen Gliedes, der 
vorgegebenen Reihe, verdient zuförderst bemerkt zn 
werden, daß sowohl die Differenziation, ajs Integra­
tion leicht geschehen könne, wenn ein veränderlicher In­
dex x, angenommen wird, wie dies bereits in der er­
sten Art, hinlänglich gezeigt worden ist, wo das sum- 
watorischei.Glied z : x, als eine Applikate einer Curve 
betrachtet ward, indem der Index x, sich auf die Ab- 
scisse bezog, weshalb ich in der Differenzialrechnung^ 
vorzüglich jnexplicabeln Funktionen, erforscht habe.

41.
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41, Aus der allgemeinen Formel, für das gegebene 
summatorische Glied s ; x, wollen wir hier ebenfalls, 
den Fall der harmonischen Reihe entwickeln, woselbst

L: x — 1 f I t ♦ ♦ . t ist,

und den Werth derselben, für den Index x ; suchen, 
also wegen

(x)--^; p=U ; q = —=

erhalten wir: 
t i t A t I t T=1

oder 8 x: ’ = 4 ? :c
1  r  t t I
i 4' ? 6 I

___ zif____ Itf 1 C____x 6 I
-j S 7 vJ

Ziehen wir die einzelnen Columnen, in eine Summe 
6 , 6

zusammen, so wrrd 8 x : § —— t —— t

+ —6— f seyn und zwar convergirt diese 

Z.4.Z.7 4-5*  6-9
Reihe, weit mehr, als diejenige, welche wir in der 

zweyten Art fanden.

42. Wenn wir aber die Glieder, nicht zusammen 
Ziehen, sondern nur die verbinden, welche einerley 
Renner haben, und zwar mit Weglassung der untersten 

Reihe, so bekommen wie.
8X:



Einer Differenzialrechnung. 31

f „ » + , J.9 t8(l tlfit'tf t2C.
8x:3-.2TxT3_l6(xt|i.Hxt K#) 

oder schreiben wir, statt der obern Reihe
16 G trotzt 2C-)

so haben wir
X x» ♦ X 3 — T XXI _ 11 I ___ 11 t _ X xa' S ♦ 2 H — 3 5 15 8 9" T x o *Tx  * 2C*

addiren wir beyderseits
12 = i — 4 *H  — 5 'H- — 4 12c. so wird 
f s : 4 — 12 = 1 ~4 — 4 = ;; folglich
x:I-=2 — 2 I2 deren Werth vorzüglich, mit je­

nem übereinkommt, welcher in der ersten Art gegeben 

worden ist,

Supplement. *

Von den merplikabeln Funktionen der Form. 

«•;x = A.B.C.D.E.... . X.

1. Hier sind die Faktoren A . B . c . D 2c. Glieder 
einer gewissen Reihe, mit den Anzeigern 1/2, z, 4, rc. 
übereinstimmend, und X das Glied, welches mit dem 
Index x übereintrifft; die Faktoren hingegen, welche 
den folgenden Anzeigern xti;xf2;xt3;2c. ent­
sprochen, will ich mit X', X", X'" rc. bezeichnen. Hier­
aus erhellet sogleich, daß »: (x t1)' = X'. * ; x, und 
sr: <x 12) = Xy. X" . f : x, seyn wird, und so fer­
ner. Die vorhergehenden aber, werden «-: (x — i)=? 
5F * X
“xF- seyn, rc. Hieraus ist zu ersehen, daß es hinrei- 

chend sey, wenn man nur diese Formeln, für die um
Einheiten kleinere,n Werthe, von x, bezeichnet.

2. So



Beleuchtungen der letztem Kapitel

2. So oft nun x, eine ganze positive Zahl war, 
so ergeben sich die Werthe von « : x von selbst. Es 

wird nemlich
% : i = A; *■:  2 = AB; «■: 3 = abc; rc. 

Wenn aber x keine ganze', positive Zahl ist, so wird 
das Produkt, welches wir mit«- : x bezeichnen, eine 
jncxplikable Funktion vonx, wofern nicht etwan die 
Faktoren A, B, c, D rc. so Beschaffen wären, daß die 
vorhergehende, durch die nachfolgenden aufgehoben 
würden, so wie sich dies in dieser Form ereignet: 

Wenn demnach »:
—r-— bekannt geworden, oder

auch in diesem Beyspiel:
XX t 2 X , 

(n i)2’
so wird

seyn, woruus erhellet, daß überhaupt«- :x = ^~~

«•: x — 4-. ‘i. is ♦ 2 s •

seyn werde.
3. Dre inexplikabeln Falle, mit Logarithmen 

hingegen, gehören zur vorhergehenden Dissertation; 

denn es wird
lr : X = 1A 11B tIc ♦ ♦ ♦. t IX seyn, 

also giebt diese Form, wenn sie mit jener abgehandelten 
verglichen wird, folgende Werthe:
j : x »1» : x; (ij = 1A; (2) = lß; (3) = 1C; rc. 

und 
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und (x) = 1 X, alsdann aber ist (x f 1) = 1 X';(xf2)
1 X"; rc., also können wir nach beobachteter Ueber- 

einkunft, die bereits abgehandelten Arten, auf gegen­
wärtigen Fall anwenden.

Erste Art,
in der die Logarithmen der unendlichsten Faktoren 
verschwinden, oder diese Faktoren mit der Einheit 

aquiret worden.

4. Da wir also für diese Art, nach eingeführten 
Werthen erhalten:

1 x : x = 1A f iß t lc f 1D -j- rc.
— IX' — IX"—IX"'—IX'V—rc.

so wird, wenn wir bis auf Zahlen hinaufgehen, 
ABC D

weshalb hier keine Beyspiele gegeben werden, weil be­
reits mehrere in der Differenzialrechnung, sind entwi*  
ckelt,.worden.

Zweyte Art,

in der die unendlichsten Faktoren unter sich, gleich 

sind.

5. Da die Logarithmen derselben, ebenfalls unter 
hch gleich seyn werden, so verschwinden auch alle ersten 
Differenzen, folglich wollen wir die §. 25. gefundene

hierauf anwenden, so wird:
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•j*  i — xlA f i — xlß i — xlCl
1 r : X s xlA f xlß f xlc f xlD > 2C.‘ 

IX"— 1X"'jIX' —
und wenn man bis auf Zahlen hinaufgehet, so werden 

wir haben:

Dritte Art,
in der die unendlichsten Glieder, eine geometrische

Progreßion aus machen.

6. Da die LogarithmeMdieser Glieder, eine geome­
trische Progreßiom ausmachen, so verschwinden deren 
zweyte Differenzen. Damit wir nun den §. 35. ge­
fundenen Ausdruck, auf diesen Fall anwenden können, 
so ist der Kürze wegen zu bemerken, das angesetzt war

daher wir erhalten
t plA f piß ch plC'

—----— 1A — qlB— qLC — qlD
I n : x SS 2 > 2C.

1B t nc t rlD f rlE
2

—IX'—IX"—1X"'J
Setzen wir hier ferner Kürze halber.

so werden wir, bis auf Zahlen aufsteigend, diesen Aus­
druck erhalten:
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B" APCr BW C9Er 
’r,X"'Ärä*  Xz * cTx7' * DÖX^ 4 U*

7. Auf diese Weise hoffe ich, die Lehre von den 
rnexplikabeln Funktionen, welche in der Differenzial? 
rechnung nicht genau, und deutlich genung auseinan- 
dergesetzt worden, fast gänzlich erschöpft zu haben, so 
daß man nichts weiter verlangen wird; welches um so 
nöthiger schien, da dies Argument bisher, noch von 
niemanden abgehandelt worden war, und von äußer­
ster Wichtigkeit, bey Interpolierung der Reihen ist, 
auch hieraus die Symptome der krummen Linien zu 
erforschen waren, deren Applikate, durch inexplicable 
Funktionen, ausgedrückt werden.

Anmerkungen.

Anmerkung nach Cap. II. Theil I,

i,

Es sey die Differenzialgleichung dyfyXd x=Zdx 
gegeben, in welcher X u. Z jede Funktion, der ver­
änderlichen x ausdrücken, so ist bekannt, daß man 
tie Integration dieser Gleichung, erhalten kann, wenn 

man y = u z setzt, woraus udzf z d u f u z X d x
2 dx entstehet, und wo durch einen geschickten Werth,
Größe u, oder z, zwey Glieder gleich gesHt 

^ect>en können. Wir wollen daher zdufuzXdx 

—anneh^en, so wird durch die Division mit-, du

C 2 t *
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d u
-j- uXdx --- o werden, folglich -Xdx; nimmt 

man hiervon das Integral, so kommt lu = /Xdx, 

L i. u = e”VXdx, jyenn nehmlich e, gleich der Ba­

sis der hyperbolischen Logarithmen, angenommen wird. 
Wenn dies geschehen, so wird die gegebene Gleichung 

t Zdx 
in udz s= Zdx umgekehrt, und man erhalt dz =

, . rZdx f /Xdx
und durchs Integreren z=J-— =J « Zdx,

s fXdx7.Jed Zdx
so wie endlich y = u z s=------------———

/Xdxe J
2. Wenn diese Methode, fleißig erwogen wird, so 

wird daraus deutlich erhellen, daß man dieselbe mit 
glüklichem Erfolge, auf jene Differenzialgleichungen 
übertragen könne, welche eben diese Form, als vor­
hergehende Gleichung haben, vorausgesetzt, daß sie 
mit endlichen'Differenzen, gegeben werden.

Es sey folgende Gleichung Ay f MyAx = NAx, 
oder Ay t My = N (wenn nehmlich Ax für die Ein­
heit genommen wird) in welcher die Größen M «nö N, 
die Funktionen jeder veränderlichen x bezeichnen. 
Es sey zuerst y = uz, so wird nach dieser Hypo­
these endlicher Differenzen, Ay == u Az tz Auf A«Ae 
seyn; und daher gehet diese Gleichung über in: 

uAz t zAu t AuAz t Muz = N.
Gesetzt daß vor zwey Gliedern zAu t Muz ss o, so 

entstehet Au t Mu » o, oder ~~ sa — M. Für 

die
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die Integration dieser Gleichung, nach dieser Hypo­
these der endlichen'Differenz Au, nehme 1$ u = e*,  so 

t A t t f A^ %
erhalte ich uf Au=e , unt> A u = e \e —ij, 

woraus — — 1 --- — blöder —M toirb;
u

vermittelst der Logarithmen A t = 1 (1 — M) und 
hierauf erfolgter Integration, bekommen wir

t = zi(i — M). Es ist aber, wie aus der Ana- 
lysis bekannt, das Aggregat aus den Logarithmen 
Mehrerer Zahlen, gleich dem Logarithmus des Pro­
dukts, aller dieser Zahlen; wenn wir also durch 

» (i —M) das stetige Produkt, aller in dieser For­
mell — M enthaltenen Größen, ausdrücken, so ent­
stehet t = lr (1 — M) und deshalb u = e*  = w 
(1 — M). Durch den bereits genannten beyden, in 
Nichts übergchenden Gliedern, wird die obere Glei­
chung in uAz f AuAz e= N verändert, und man 

erhalt Az = so wie durch das Integriren

z c= x------ —. Da aber bereits u = *■  (1 — M)
u f Au

und wenn das nach M nächstfolgende Glied, durch M' 
bezeichnet wird', so^kommt utAu = sr(i-^- Mz);

alf0 auch - = z ^—^5’

Wird

und weil y =3 zu, so

oder 
wird

wenn irgend eine beständige Größe A, 
' so erhalten wir:

1

addiret
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Beyspiele.
Es sey die Gleichung y f (x f i) A y f a(2Xf i) 

ZZ o gegeben, man soll den besondern Werth 

von y finden.

Diese Gleichung auf die allgemeine Form 
y f M y c= N reducier, giebt

folglich bekommen wir

demnach wird das Produkt aller Werthe der Formel 

—t—, die man erhält, wenn in derselben s atc x, 
x T I
nach und nach x — i, x — 2, .... Z, 2, i iub'ri-

x ““ 1 x — 2 x ■— 3
tuiret werden; nehmlich--------- --------

X X—I x — 2

seyn, also wird das durch » (1—M) bezeichnete,=-|;jenec

hingegen durch w(r — M') ausgedrückte,

Folglich bekommt man, durch diese subftituirten 
Werthe, in der Gleichung
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Im §. 60. aber ward gefunden

Sxö = Zl G= X , und s X =S ’ X1 — I X

also wird y = — -— ax seyn.
X

3. Nun sey die Gleichung y' = Ry f T gegeben, 
in welcher y^ ein Glied bezeichnet, welches in der 
Reihe der Größen y zunächst auf y folget: folglich weil 
y' ss y f A y, so gehet die Gleichung über in 
Ay t (1 — R)y = T. Wird diese Gleichung, mit 
der vorhergehenden verglichen, so kommt

•1 — R = M; T = N,
Man erhalt demnach für den Werth der Größe y, fol­
genden Ausdruck:

y ---- «R^A f T-----  )
1 k »K' V

Wenn R eine beständige Größe ist, so erhellet, daß 
die Größen »R und *R',  nichts anders, als die Po­

tenzen von R sind, deren Exponent mit der, in die­
ser Reihe y, den Ort oder Index bezeichnenden Zahl, 
der Glieder y und y', aquiret wird. Es sey also m 
diese Zahl, oder der Index des von y besetzten Orts, 
so daß ym eben so viel als y' sey, so erhält man die 

Gleichung _ym c= Rm t 2 I—Ist t bestän­

dig, so wird 2------ - —
m t IR 1

= Tz —T- ■ woselbst die 
RmtZ

^urch —-s 1 dargestellten Glieder, eine geometri­

sche Progression ausmachen, deren Summe sogleich

gesun-
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i

Aus

und

. m t I AR ‘
Rmtl - I

+ T.------------- -------1 R — I
gebracht wird, und dieser ist in der That der Werth, 

' wel-

alsdann
y™=Rm(AtT.5^™-i)), oder

Rm — x
ym ---» AR'» f T . - _"Y**

Damit wir nun auch zeigen, daß durch den gefunde­
nen Werth von y, allen Bedingungen der gegebenen

Gleichung y*  = Ry f T, oder y = Rym f T 
Genüge geleistet wird, so ist nichts weiter nöthig, 
als die gefundene Formel, durch R zu multipliziren, 
und die Größe T zu addiren, wodurch man den 
Ausdruck

+ i

R — i
ARm 1 f T *

bekommt, welcher auf

gefunden wird; diese Summe von anfangend,uyrd

6 genannt; nehmlich

r * R*  r® * ** ‘^R,n S' 

multipüzirt man mit R, so erhalt man:

•f*  ~ + 1 + * * ♦ ♦ +------------SR = S "j*  i
1 R T Ra 1 ‘R®- I Rm

dieser Gleichung entstehet
Rm — i

8 —------------------- ;
Rm (R — I)
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welcher die allgemeine Formel, fürdasGlied ym ' ge­

währet.
4. Nach der nunmehr dargeftellten Methode 

jede Differenzialgleichung, die aus endlichen Diffe­
renzen bestehet, zu integriren, welche unter der allge­
meinen Form Z\ y fMy = N begriffen ist, ist bloß 
noch übrig, daß wir bis zur Integration anderer 
Gleichungen, die von eben derselben abhängen, fort­
schreiten. Es hat aber bereits d'Alembert, in den
Memoiren der berlinischen Akademie bewiesen, daß 
alle Diffecenzialgleichungen, Sie aus den unendlich 
kleinen Differenzen dieser Form bestehen:

(A) y t
Ady 
—*

Bddy Gd’y 
dx2 * dx’

wo A, B, C ic. beständige Größen sind, und X eine 
jede Funktion, von x ist, auf diese ein-fachere Glei­
chung, 

wo H beständig, und V eine Funktion von x ist, ge­
bracht und verwandelt werden können. Diese Glei­
chung ist in der That, mit jener einerley, welche wir 
ebenfalls unter vorausgesetzten, endlichen Differenzen, 
zu integriren gelehret haben. Wenn also die d'Alem- 
bertsche Methode auch auf die Gleichungen endli­
cher Differenzen, -Mgewendet werden kann, so ist es 
gleichfalls erlaubt, jede Gleichung, unter eben dieser 
Hypothese endlicher Differenzen, zu integriren, als: 
^i* AAytBAÄytc zX’yf 2c. s^x, 

un^ folglich auch die Gleichung dieser Form: 

y' t Pyz/ t Qy'" ♦ . . f k« = x

welche
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welche mit Recht, für eine allgemeine Formel, der 
wiederkehrenden Reihen, gehalten werden kann. 
Diese sinnreiche d'Alembertsche Methode, die man die 
Methode der unbestimmten Coeffiz ien ten 
Kennt, ist in dieser enthalten: man nimmt nehmlich:

so entstehen die Gleichungen:

Alsdann werden diese einzelnen Gleichungen, auf un­
bestimmte Coeffizienten a, b, c, rc. gebracht, damit 
daraus entstehe:

ady . bdp cdq
ap ------ O -—■ == o; er — —=o;2C. 

dx dx dx
Diese letzter« hingegen, werden zur Gleichung (A) 
addirt, die, wenn sie nicht über die Differenzen, der 
Veränderlichen y hinausgehet, nach erfolgten Sub­
stitutionen, in folgende verwandelt wird:

(B) ... yt(A t a>P t (B t b) q— —= X.

Auf der ersten Seite dieser Gleichung, wollen wir 
jetzt den einen Theil

y t'(A f a)p t (B t b)q
unter a gebracht annehmen, und ihn als ein Multi- 
plum des Integrals, des andern Theils ady f bdp 
— cdq betrachten, oder welches eben so viel ist, als

, bdp Cdq 
dyf(Afa) dpt(ßfb)<iq = dyt—----------

daher entspringen aus der Vergleichung, der einan­
der entsprechenden Glieder, die Gleichheiten

A f a
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a
Die Wurzeln dieser Gleichung a$f Aaa f Ba f c = o, 
geben drey verschiedene Werthe vona, welche den er­
forderlichen Bedingungen, gleichfalls Genüge leisten. 
Nun sey

7 t (A t a) p f (B f b) q = z, 
alsdenn verändere man die gefundene Gleichung (B) in 

a d z t , z d x Xdx
------------ ---- X, oder dz  

dx------------------------------a a
so werden wir nach geschehener Vergleichung, der 
Gleichung §. 1. dy t yPdx = zax (wo zur Ver­
meidung der Weitschweifigkeit, X in k verändert wird), 
erhalten:

f- ~ — woraus alsdann folgt
e * s=e - a,

Nun benenne ich az, a", azzz, als drey unterschiedene 
Werthe von a, und bz, bzz, dZ", als andere Werthe 
von b, welche mit den erstern gleichnahmig sind; 
Endlich zz, zz/, Zz/z die Werthe der veränderlichen 

z, welche durch die Stellen az, azz, a/zz umfas- 
set werden. Hieraus fließen folgende drey Gleichungen:

yf
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y't (A f az ) p f (B f l)'' ) q sa Zz
y t (A f azz) p f (B f bz/ ) q = Z/z
y t (A t *"')  pf(Bf bzzz) q -- Zzzz

Werden hierauf aus diesen drey Gleichungen, die 
Größen |p und q eliminirt, so findet man den 
Werth von y, der in folgender Gleichung dargestellt 

wird:
y = FZz f GZzz f HZzz/ 

wo F, G, Hi, beständige Größen sinddie von jenen 
A, B, .az, az/, rc. abhangen.

5. Aus der bisher erwogenen Methode, erhellet 
deutlich, daß jede, aus weit mehrern Gliedern er-- 
wachsene Gleichung, als gegenwärtige:

Ady Bddy C£y Dd4y Ed’y ~
7 dx 7 dx2 T dx$ T dx4 T dx5 

gleichfalls aufgelößt, und daraus erhalten werden 
können:

y = FZZ t GZZZ t HZZZZ t JZ/Z// t KZzzzzz, 
wo die Größen zz, z/z, rc. solche Funktionen von x u. x 

sind, so daß

wenn für a die fünf Wurzeln az, azz, azz/, azzz/, azz'", 
folgender Gleichung substituiret worden:

a5 's Aa4 f Ba3 f Ca5 f Da f E = 0.
Allein weit nützlicher und vortheilhafter ist es, wenn 
diese Methode, auch auf Gleichungen angewendet 
wird, die aus endlichen Differenzen bestehen.
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6, Es sey also folgende, eine endliche Differen- 
zialgleichung der fünften Ordnung, als

y f AAy t B A2y t cA'y'fDA4yfEA?y=X 

man setze
A y =?p; Ap = g; A q = r; A r = S/ 

damit die Gleichheiten 
p — Ay = o ; q—Ap = o; r — Aq = o ; s—Aresa 
herauskommen.

Diese mit den unbestimmten Coeffizlenten a, b, c, d, 
multiplizirt, giebt

ap— aAy=o; bq—bAp=o ; er—cAq=o; 
d s — d A r = q.

Zu dieser vorgegebenen Gleichung, werden nach Sub- 
stituirung, der für die Differenzen von y, angenom­
menen Werthe, die jetzt gefundenen Gleichheiten ad-- 
diret; wenn dies geschehen, so entstehet die Gleichung: 
y f (A t a) p t (B f b) q f (c t c) r t (D f d) s
— a A y — b Ap— c A q — d A r f E A sksX, 

diesen Theil der Gleichung

y t (A t a) p t (B t b) q t (C f c) r f (Dfd)s 
setze man gleich dem andern differenziirt, Theile 

a A y t b A P tcAqtdAr — L A 5 

wenn man diesen durch —■ a dividiret, so wird 
Ay t(Ata) Apt(Btb)Aqt(Ctc) Arf(Dfd) As s 
A ,bAp . ,cAq , dAr EA$
Ayt—- it—- t—---------

a a a a
^aher -kommen durch Vergleichung der homologen 
Glieder, diese Gleichheiten:

A"1'a = ‘^; Btb=-;Cfc=-; Dfd==-£, 
a ’ * a a a

au^ ^enetb vermöge der gewöhnlichen Eliminirung, 
die Gleichung des fünften Grads entspringt:

a5
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a5 f Aa4 f Ba3 f Ca*  f Da f E es o;
Diese Wurzeln, geben fünf unterschiedene Werthe 
von a

a', a", a'/z, a'v, a*.  Nun nehme man 
y t(Ai,a)<pt (B-^b) qf (Cfc) rf (Dfd) s = z 

desgleichen
Az=Ayt (Afa) Ap t (Btb) (Cfc) Ar f (Dfd) As =

Ayf ' — Apt — Aqt —* Ar— — As
* a a a a

woraus die Gleichung:
Z X

z — a A z — X, das ist A z — — —------- , 
a a

und zwar von eben der Form A y t Mx = N als 
die vorhergehende entstehet, (§. 2.) wo aus der Verr 
gleichung der homologen Glieder,

M == — "; N's=—— , und folglich 1 — M = -™-, 

hergeleitet wird. Weshalb

Und weil a beständig ist, so wird gefunden

hier bezeichnet m, wie vorher den Index des Orts, 
welcher von dem Gliede z, in der Reihe der Grö­
ßen z, besetzt ist. Wenn X eine beständige Größe 
ist# so erhalten wir durch den Ausdruck der Summe, 
der geomerrtjchen Progression.
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am

Da aber a fünf verschiedene Werthe az, azz, azzz, a% 
besitzt, so entstehen, wenn diese Werthe, in der gefun­
denen Formel, an deren Stelle gesetzt werden, eben 
so viele Werthe, von Zm, welche sämmtlich hinreich<m: 
vermöge dieses durch zz, Zzz, z/z/z zzv, z*  bezeichne­
ten, erhalten wir folgende fünf Gleichungen: 

yf (Afaz )p t (Bf bz ) qt(ctc' )r-f(Df dz )s=a Zz 
y (A azz) p 's*  ('B 's bzz ) q f (C cz/) r f (D dzz) s es 2" 
y i*(A  azz/) p ’s (Bf bz/z) •f*.c /z/) r -J*  (D-f dzzz) s=a Zzz/ 
yt(AtaZv) pt(Bf bzv) qf (Cf czv) r | (Df d'v) s =3 Zzv 

y t(AtaV)Pt(ßtbv)qt(Cfcv)r-j-(Dtdv)sssZv 
Alsdann werden hieraus, nach den bekannten Re­
geln, die Größen p, q, r, s eliminirt, worauf man 

zu der Gleichung dieser Form
y = FZZ f GZZZ t HZZZZ t JZzv f KZv 

gelangt, in welcher f, g, h, j, k beständige Grö­
ßen sind, welche von den bekannten Größen, dieser 
Gleichungen abhangen,

7. Es sey folgende Gleichung gegeben:
yz t Ayzz t B"z t Cy/v ♦ ♦♦♦/? w. = X,

bey welcher y', yz, yzzz, rc. Glieder bezeichnen, Die 
*uf einander in der Reihe der Größen y, zunächst 
kvIgen, so iü klar, daß
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y" tAyz
y^G=y/z -f-Ay" =yztAyztA(yzfAyz)=yzt2Ay' 

fA2 yz 
yVv==y///4-Ayzzz = y/1 2 A yz t A2yz tA (yzt2 Ayz 

tA2yz) 
= yz t 3 Ayz t3 A2yztA’yzz

«nb so ferner von den übrigen. Hieraus ergiebt sich, 
daß man die gegebene Gleichung, auf die Form de­
rer, welche wir vorhin untersucht haben, zurückbrin­
gen könne. Um aber desto leichter, und geschwinder, 
diese Gleichung auf die wiederkehrenden Reihen, an- 
zuwenden, so ist es Vortheilhaft, die Glieder y', yzz, 
yzzz, rc. in verkehrter Ordnung zu betrqchten, damit 
man! erhalte yzz t)A y" --- yz; yzzz t A yzzz = yzz; yz’

ZX y/v = yz/z, rc. und die Exponenten z, ", ZZZ, rc. die, 
die Entfernung jedes beliebigen Gliedes, vom letztem 
y bezeichnen mögen. Man setze yzz = Pz, so wird 
y" X p" seyn; es sey ferner Pzz = qz, Pz" --- qzz, 

q" = rz, also auch qzzz = rzz = sz. Hieraus entste­
hen die Gleichheiten y" = pz; yzzz — qz; yZvc= r,; 
yV — sz; yvZ = szz. Wenn nun die Werthe, in der 
vorgegebenen Gleichung, an deren Stelle gesetzt wer­
den, so gehet selbige in diese über:

(A) . . .. yztApztßqztCr'tDs'fEszz --- X. 

Wenn nun die Gleichungen
p#__o ; qz_______ pzz = o; r'—-q/z = o; sz—rzzao

mit den unbestimmten Coeffizienten a, b, c, d, ein­
zeln multipliciret, und dlese dem Gebrauch nach, zur 
Gleichung (A) hinzu addiret werden, so findet man 

folgende;
y'f (As a) pz t’(Bfb) qzt (Cfcjr'f (Dfdj'sz = X 

a yzz —* b Pz/ c q/z 1— d r"^L s/z
Bey
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Bey dem ersten Theil dieser Gleichung 

y't(Ata)p/f(Btb)q/t(Cfc) r'f(Df d) s', 
Lehen die abwechselnden Glieder, in die nächst vor­
hergehenden über, so daß

Y't(Ata)pz t (ß'tb)qzzf (Cf c)r"f (Df d)s" 
wird; rchiese Größe setze man, gleich dem andern 
Theile, durch a dividirt, oder

y" -f- — p" f ~ qzz t —r" — ~ s",
, a a a a

so erhalt man nach äquirten, homologen Coeffieienten, 
die Gleichungen

Ata:=|-; Btb = -; G^c = —; D-rd= —'
,a a a a

aus denen, wie in der vorigen vom fünften Grade, 
die Gleichung:

a$ f Aa*  f Ba3 f Ca3 t Da t E = o 
herausgebracht wird; deren Wurzeln durch az, aZZ, a 
a/v, avz bezeichnet werden. Nimmt man nun 

zI = yI^(Ata)pIf(Btb) q,tCCtc)r,f(Dfd)st, 
so gehet die vorgegebene Gleichung, jn diese über: 

z1 — azXI = X, welcho(wegen z’ = zir)z\zx,f 
(1—a) zxx —X wird. Vergleicht man nun diese, mit 
der Gleichung §.13. so entstehe?

y s= z”, R = a, T = X,

folglich wird sie wegen

wo m den Ort bezeichnet, der von dem Gliede zmt 
nt Reihe derselben z eingenommen ward. Da 
aber anstatt a, durch Stellvertretungen, die einzelnen 

D Wur-
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Wurzeln a‘, a“ rc., substituiret werden können, so 
folgt hieraus, daß fünf verschiedene Werthe der Grö­
ße z®, welche durch Z', Z", z'", Z'v, zv ausgedrückc 
sind, entspringen, und alsdann folgende fünf Glei­

chungen, hervorgebracht werden:
*■4 •><

5 S 5 B s
-b -fr -b —b —b

z~x r~x z^-\
> > > > >

•4- •4- *4* •4* *4*
P

<5 <
X_V X_y x_>
-O "Ö ■c TSg 3 3 3 S
•+ •-b -b -b Hb

■~xso tö tö tÖ to
*4« •+ •+ •4»
er" er er er er
<

'—' s— x-> x—z
kD pQ >p UD

5 3 5 3 3
•4- •4- •+ -b -b

—s, z~x o z-x<r> O O o
•4- -b •4- -b •4*
o 
-4

o
<

o

x—' o X_Z

*1
3 g 3 3 *g

-b H- -b -b *4-
.-- - <—X

ö ö Ü o ö
*4* *+ -b -b 4*

P* Cu P* P-
< <"

x_y x_z

5
||

3
||

V)
3
II

3
II

5 
n11

N
II
N

II
N

II
N

ii
N

.5 < 5
Wer-
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Werden ferner die Größen pm, qm, rm, sm aus den­
selben eliminixt, so bekommt man die Formel: 

ym G FZZ f GZ/z t HZZZZ f jZ'v f RZv, worinnen 
F, O, h rc. beständige sind, welche durch Verglet- 
chung, eben so vieler Glieder der Reihe derselben y, 
bestimmt werden müssen.

8. WenniX eine beständige Größe ist, so wird die 
($. 7.) durch

a
ausgedrückte Summe­

as —- 1
= x

Und wenn die durch L benannte beständige Größe, der 
Integration, hinzu gefügt« wird, so erlangen wir endlich

Z = L am + X *—-1,
a — l >

woraus sogleich die Werthe zz, zz/, zzzz, rc. erhalten 
werden, wenn zum wenigsten statt a, die gefunde­
nen Wurzeln az, azz, azzz, rc. subftituiret werden.

9. Aus dem bisher gesagten, wird folgender, 
allgemeiner Lehrsatz abgeleitet:
In der Gleichung
ym f Aym 1 f Bym — * f Cym — f 2C.= X, 
wo die Exponenten y derselben, die von y 
besetzten Oerter bezeichnen, so wie durch 
b'e gefundenen Wurzeln, az, azz, azzz rc. der 
®1 e i u n g

an f Aa»* 1 f Ba"-3 f je. = ö,
Erhält man überhaupt:

D 2 ym
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y" = Fa'm (♦+tGa" m (+ t "7^0 

t Ha'" m t

2C.

War hingegen X = o, so konnte die beständige 
unterdrückt werden, und wir bekommen die einfachere 
Gleichung

Wenn X.eine beständige Größe war, so ergiebt sich 

die Gleichung:
yai=f (Fa'm f Ca"in f Ha///m f Ja'*® f KaVm t rc.)

yin — Fa/m t Ga//m t Ha'"m tja zvmj<avm f 2C. 
welche das allgemeine Glied der Reihe dererselben y 

giebt, nehmlich der Reihe
m .r. Aym - 1 f ßy m - 2 f Cy m ~ 3 f Dym-42C. = O, 

die in der That, nichts anders, als eine wiederkeh­
rende Reihe, deren Beziehungs - Scale

— A — B — C — D — E — 2C. ist.
io. Dies ist also die Theorie der wiederkehren­

den Reihen, in Beziehung auf die Fundamente, der 
, Differenzialrechnung, welche aus den reinsten Grund- 
' sätzen, geradezu hergenommen ist, indem sie vorher, 

auf gänzlich indirekten Methoden, und fremden No­
tionen, berührte, die von weitem her abgeleitet wa­

ren,

Die-

i
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Diese ganz vortrefiiche Lehre, wollen wir wegen 
ihres großen Nutzens, und Gebrauchs in der gesamm- 

ten Analysis, durch einige Beyspiele erläutern, tmh 
den Fähigkeiten der Anfänger angemessen, barstellen.

Erstes Beyspiel.
Es soll das allgemeine Glied einer wie« 

der kehrenden Reihe, derzweitenOrdnung, 
11 2 u= f 2u3f 6u4 t iou1 f 22 us f 42 u’ f 86 u8 sie. 
gefunden werden, welche laus der Entwi­
ckelung des Rationalbruches

I — u
1.__ u_2 u, entspringt.

Aus der Benennung des allgemeinen Gliedes durch 
y", der Zahlenreihe i, o, 2, 2, 6, io rc. und den 
zwey Gliedern y', y, welche demselben y" nächst vor­
hergehen, erhält man y" --- y' f 2 y, wenn turnt 
lich 1 f 2 als Beziehungs - Scale vorhanden 

ist. Nun wird wegen y' = y f A y, und y" = y 
t 2 A y f A“ y, die Gleichung 7" = y' f 2 y, 
in diese, yf2AytAäy;=33ytA y umge­
kehrt , woraus

(A) y — | A y — ’A2y = o entstehet. 
Alsdann nehme man A y = p, und nach erfolgter 
Multiplikation, mit dem unbestimmten Coeffizienten a; 

verbinde man die Gleichheit a p — a A y = o, 
d^se addire man zur Gleichung (A) wenn p statt 

y und A p statt A2 y substituiret worden, so be­
kommt man hieraus, die Gleichung

ych (a — r) P — a A y — 5 Ap--o.

Es
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Folglich ist

zm — Rm f S

und hinwiederum
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Es sey ferner, der Theil dieser Gleichung y t (a — I) p, 

gleich dem Integral des andern Theils —- a A y 
>— I d pz durch — a dividirt, das ist, es sey

y t(a — 5) p = y t A

daher erfolgt aus der Vergleichung der Glieder
i .

a _ I = 2a
nemlich I

-Wy • - <-
Es ist aber zm = ymt (a' - |) P = y«> t i p; 
und ferner z1» h y“ f (a/y — z) p = ym — p. 
Also wenn die zwey gefundenen Werthe, für z«i sub- 
stituiret werden, so entstehen zwey Gleichungen

2'N A = ym f i p, (— i) mß —j yin — p,
aus denen, wenn p eliminirt wird, diese erfolgt:

ytn

a* — — 1 = 0, ferner a' = i, a/z =
2

Setzt man nun z = y f (a — Dp, so gehet die 

Gleichung (B) in z — a A z = o, oder z —-> = °, 

über, die, wenn sie mit jener (Z. Z.) Ayb(r —R) y=l, 
verglichen wird,

T = O, I — R = — -, oder R = —y = zgiebt.
a a y
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2m^TA f (—1) mB
ym = ---------- ------*

3
Alsdann bestimme man, je zwey willkührlich bestän­
dige Größen A, B, und zwar, daß nach der Hypo- 
these m = o, y = 1 und der Hypothese m —1, y=» 
wird, so erlangen wir zwey Gleichungen

2 AfB 4 A — B
1 — —-—; o =-------------;

3 3
diese geben A a |, B = 2. Mithin das verlangte 
allgemeine Glied

2 in + 2 (— 1) m
.— -------- -— ---------- um seyn wird.

3
Da die Aufgaben, welche zur Analyse der Glücksfälle 
oder zur Berechnung der Wahrscheinlichkeit, bey 
Spielen gehören, aus der Theorie dieser endlichen 
Differenzialgleichungen, fließen und direkte Auflösun­
gen erhalten, so wollen wir nur zwey Beyspiele vor­

tragen, welche aus dem Brettspiele hergenommen 
sind.

Zweytes Beyspiel.

A spielet mit B, das von den Franzosen 
sogenannte a Croix ou pile (im deutschen: 
Münz oder Flach, welches vermittelst einer, 
in die Höhe geworfenem Münze geschiehet, 

wovon die eine Seite derselben croix, die 
andere aber pile heißt.) unter folgenden 
Bedingungen: daß wenn A beym ersten 

u c f' croix hat, derselbe von B z w e y G u l- 
b t n e m p f 5.« g t; fallt aber auf den andern 

W u r f
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Wurf croix, so bekommt er von B 4 Gulden, 
beym dritten 8; beym xten aber 2 x Gul­
den. Es fragt sich also, welche Erwartung 
A habe, d. i. wie viel a an B, vor dem Spie­
le geben müsse, wenn beyder Glück gleich
sey.

Es bezeichne yx die Anzahl der Gulden', wel­
che a voraus bezahlen sollte, so wie x die Zahl der 
Würf^. Wenn x um die Einheit vermehret wird, so 

daß das von A, vor dem Spiel zu bezahlende Geld, 
oder dre Erwartung von A, durch 7 , ausgedrückt 

X t I
wird, so ist klar, daß das Geld y um der Zahl 

der Gulden 2 x 1 nach der Wahrscheinlichkeit 

——, dasselbe nach dem (x f 1) ten Wurfe zu gewin-
2 * T 1

nen, vermehrt werden muß. Wir bekommen daher die 

Gleichung: 1
y x t! = y z + 4+7 =y * t

diese zu integriren, nehmen wir die Formel y' =□ 
R y f T, so bekommt man durch die Verbindung 
der Glieder:

Daher das verlangte Integral, gefunden wird:

y = y x = ' R (A f 5 ^) = AfZ- I = Afx‘

Die willkührlich beständige Größe A, wird be­
stimmt, wenn x = 1 gesetzt wird, woraus man
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nemlich die Zahl der von A zu bezahlenden Gulden 
= x. W. Z. E. W. An diesem weit berühmten Pro- 
blem, haben die größten Mathematiker unseres Zeit­
alters , ein Daniel Bernoulli, la Fontaine, 
D'Alembert, La Place, um die Wette gearbeitet 
welche aus den hieraus abgeleiteten, sinnreichen 
Spekulationen, die Berechnung der Wahrscheinlich­
keiten, bewundernswürdig erläutert haben.

Drittes Beyspiel.
Es greift jemand aus einem Haufen 

Münzen, oder kleiner Brettsteinchen, de­
ren Anzahl x ist, eine unbekannte Menge 
derselben; es fragt sich also wie hoch die 
Wahrscheinlichkeit sey, ob diese gegriffene 
Menge, gerade oder ungerade war.

Man nenne y die Summe der Falle, unter wel­
chen die gegriffene Menge gerade, und z die Sum­
me der Falle, unter denen sie ungerade seyn könne. 
Gesetzt der Haufen x, werde um die Einheit vermeh­
ret, so giebt y', dre Summe der geraden Falle, und 
das wird y' = y t z seyn, bis daß jeder ungerade 
Fall, mit einer neuen Zahl verbunden, einen gera­
den Fall angiebt. Ferner z' bedeute die Summe der 
ungeraden Fälle, und weil jeder gerade Fall, ver­
bunden mit der hinzugefügten Zahl, ungerade wird, 
auch die dazu addirte Einheit ungerade ist, so wird
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z' = z f y.f i seyn. Die erste Gleichung aber, ist 
nichts anders, als A y = z, die zweite nichts an­
ders, als A z = y f i. Folglich A5 y = f i oder 
y" — 2 y' t y = y t i/ also y“ — 2 y‘ f 1, oder 
welches auf eins hinausläufd yz =12 y .f i. Aus 
der Vergleichung dieser Gleichung, mit der allge­
meinen y' = R y f T, wird R = 2, T = 1 gefun^ 
den, daher man

y = A Rx f T ---------- = A2xf2x—i = (Af l)2x—I
R —— 1

erhalten wird.
Da nun x --- i so wird y = o. Also 2A = 1 

— 2, und A = — und daher Itens y = 2X -1— 1. 
Utens z = Ay - y1 — y = 2x - 1 — 2X ~ 1 f 
1 = 2X (1 — |) = 2X - Mithin die Summe 
aller wahrscheinlichen Falle, y f z = 2X ~ 1 — 1 f 
2X - x = 2X -*  i, also wird hieraus die wahrschein-' 
lichkeit der geraden Falle

y 2X " 1 — I 
—-— =------------------,
y T z 2X — I

für die ungraden aber
y 2X “ 1

y 's z 2X — I 

gefunden. W. z. E. W.
Die Prüfung dieses Problems, welche Mairau 

in der Geschichte der Pariser Akademie, vom Jahr 
1728 angestellt hat, ist zwar äußerst fein und sinn­
reich, allein in der genauern Untersuchung desselben, 
hat dieser sonst gelehrte Mann, nicht sorgfältig ge- 

uung verfahren.

11. Außer
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n. Außer'der bisher dargestellten Methode, die 
kehre der wicderkehrenden Reihen, auf die Integra­

tion der linearischen Gleichungen, die aus endlichen 
Differenzen bestehen, zurückzuführen, hat der scharf­
sinnige Geometer, de la Orange in den Memoiren der 
berlinischen Akademie, für das Jahr 1775, eine weit 
einfachere und vortreflichere angegeben, welche unter 
allen Methoden, in der That die bequemste und ge­
schwindeste ist, besonders in den Beyspielen, in welchen 
die Wurzeln der Gleichung, unbestimmten Coeffizien- 
ten, als gleich gefunden werden, die ich kürzlich hier 

vorzutragen, am gelegentlichsten erachte.
Folgendes sey die wiederkehrende generische Reihe-

Xe, X-, X-, yj/ ‘ ‘ 7x t i' 7x f 2' * ‘ ‘ 7X f t’

deren allgemeines Glied yx ist. Ich nehme an, daß 
die linearische Beziehungs - Gleichung zwischen den 
fu< “ . ........  

und zwar, daß t die Ordnung der wiederkehrenden 
Reihe, sey, und A, B, c ... K, hingegen, jede 
beständige Coeffizienten bedeuten. Hiermit ist bereits, 
die Sache so weit abgemacht, daß diese linearische, 
endliche Differenzialgleichung, integriret, oder wel­
ches eben so viel ist, daß der analytische Werth, des 
allgemeinen Gliedes yx, in der. gegebenen Reihe ge­
geben werden kann.

Um dies zu erreichen, sey yx = az*,  wo a,z un­
bestimmte, beständige Größen sind; folglich wird

woraus
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woraus alsdenn, nach erfolgten Substitutionen, die 
Gleichung umgekehret wird in

oder (vermittelst der Division durch az*) in
(B) A f Bz f K?-* f Z‘ = o.

Aus dieser Gleichung ist klar, itens daß der 
Coeffizient a, welcher in derselben verlangt wird, 
will.ührlich sey.

Iltens daß sie so viele bestimmte Werthe, von r 
besitze, als Einheiten der Index t hat. Diese Werthe 
2, oder die Wurzeln der Gleichung, bezeichne ich 
durch * > £/ v rc.; werden nun auch unterschie­
dene, willkührliche Coeffrzienten a, b, c rc. genomv 

men, so entstehen ebensoviel, unterschiedene Werthe 
von vx, nehmlich a«x, b^x, rc., welche sowohl 
einzeln für sich, als alle zusammen, der linearischen 
Gleichung (A) Genüge leisten. Man erhält also in 

allem
y x = a* x f bfx f cyx -j« rc.

Und weil hier der Werth der Größe yx, die bestän­
digen willkürlichen a, b, c rc. unter der Zahl 1 um­
faßt, so wird derselbe daher, das vollständige Inte­
gral, der endlichen Differenzialglerchung ^A) seyn, 
welche zur Ordnung t gehöret. Die Werthe dieser 
beständigen Größen a, b, c rc. hingegen, werden ge­
funden, wenn man der veränderlichen x, die mach 
und nach folgende Werthe o, i, 2, 3, 4 rc. giebt, 
und sie mit dem angenommenen Ausdruck, des allge­
meinen Gliedes vx, nach den Hypothesen von x, mit 
den ersten Gliedern der Reihe, die stets bekannt seyn 

müssen
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müssen, vergleicht. Aus diesen Vergleichungen, ent­
springen alsdann, eben so viele Gleichungen, als 
beständige Größen, a, b, c rc. sind, welche auf 
diese Art, durch die Funktionen y0, yx, ya, rc. und 
durch die Wurzeln »> §, y rc. zu finden sind.

12. In der Hypothese t = i, darf nur eine 
Wurzel der Beziehungs - Gleichung, (8),seyn, so 
wird das allgemeine Glied, für diese Hypothese 
yx = a»x, daher, wenn X --- O genommen wird, 
y. --- a*°  = a, und also yx = y0 «x heTüuskommt.

In der Hypothese t = 2, wird wegen der bey­
den Wurzeln der Gleichung *,  € yx, = a®*  ch b£x. 
Weshalb wenn x = o, und x == 1 genommen wird, 
Awey Gleichungen y-, = a f b; yx = u« t erfol­
gen', aus denen die Werthe der unbestimmten Grö­
ßen a, b, auf folgende Weise gefunden werden:

»y<> t yz . — «yo t y-
a — 5 b —* — <0 G — «

Es sey r --- Z, dem in der Hypothese das allgemei­
ne Glied yx = a®*  f b£*  f cyx entspricht. Nimmt 
man nun successiv x = o, x = 1, x = 2, so erhalt 
man drey Gleichungen:

y. = a fbfc; yx= a*f  b£f cy; y2 = a®2t b£2fcy3; 
aus denen nach den bekannten Regeln der Algebra, 

endlich
_ gyy0 — (C f y) f y>. b *yyo —G*fy)yz  ty? e

(» — 0 (*  — y) ? (£ — *)  (» — y)’
c == ~~ t 0 yz t jj

(y — <*)  (y — Q 
hergeleitet wird. Auf gleiche Weise, wenn t =3 4;

5*  die
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r die vierte Wurzel, der Beziehungs-Gleichung (B) 
und f eine willkührlich beständige Größe ist, so wird 
dem allgemeinen Gliede entsprechend.

. yx e= a*x  f bgx f cyx f 

wird nun successiv
X=O,X=I,X = 2,X = 3 

genommen, so erhalten wir 4 Gleichungen
y« =a t b i* 6 t /
yz s= a*  ch bg 's cy "j*  /T
y2 = a* 2 f bg2 f cy2 t/T
y3 — a* 3 -f- b£3 + cy’ *f*

y»
7z
7-
73

Aus diesen werden ferner die willkührlich, beständi­
gen Größen a, b, c, sf wie folget, gefunden.

a — — ^}rr, f (£y y£) yT — (g Ty frl) y2 f y>
(« — g) — y) (« ■— )

(g — ee) (g >) (g — 31)
— -acgfy0 f («^ f g£ f «tg) y, — (« f g t >) y2 f yz 

(y — «) (y — g) (y —
<gyyn f(<*gt«y  f £y) yz •— (*f  g.f y) y2 f y.

7 g) (J - y)

13. Die Rechnung, für die Bestimmung der Wer­
the, der willkührlich, beständigen Größen a, b, c,/rc. 
zu vermeiden, dient folgendes: es sey:

(C) z1 ’s pz*  ~ 1 qz1 " 4 ... /z2 *{•  gz 's K = o
die Gleichung der ungleichen Wurzeln: «, g, y, 
welche deiser andere

(z — «) (z — g) (z — y) (z — J1) 4.. (z — 4) =0 
gleich ist; das letztere! Glied K äquire man, mit 
dem Produkt dieser Wurzeln, negativ genommen.

Ist
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Ist K = (— «) (— k) . . . (— so wird das 

Produkt positiv seyn, wenn die Zahl der Wurzeln 
gerade, negativ, wenn sie ungerade ist. Wird hinge­
gen dies Produkt, durch einen dieser Faktoren — «, 
— C rc. es sey welcher es wolle, dividirt, so entsteht 
ein positiver Quotient, wenn die Zahl der Wurzeln 
ungerad war, ein negativer, wenn sie gerade ist. 
Nach erwagung der Coeffizienten des Gliedes yo, in 
dem Werth von a, findet man für die verschiedenen 
Hypothesen, des Index t, die Sache nach folgenden 

Schema:
Indices, Coeffizienten des Gliedes ye,
t — i i
t = 2 — £

t = 3
t = 4 '— *7$

rc. rc.
Deshalb wird der Coeffizient von y0, nach dem Werth 
der willkührlich, beständigen Größe a, im Allgemei- 

knett — seyn, und wegen der Aehnlichkeit des Coef-
— »

fizienten, von y0, nach dem folgenden Werthe, der 
übrigen beständigen Größen b, c, f rc. wird der Coef- 

fizient selbst, im Werth von b durch —; im Werth

k 4 evon c durch------ ausgedruckt. Man aquirt nehmlich
--- y

demselben, mit dem Produkt aller Wurzeln der Glei- 
chung (c), negativ genommen, mit Weglassung jener, 
die durch den zu findenden Coeffizienten, multiplizirt 
wird.

U- Die
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14. Die oben angeführten Beyspiele, zeigen die Re­
gel, deren die Coeffizienten der Glieder yt, y3, y3 rc.be- 
srändig unterworfen sind. Und zwar treten die Zeichen, 
Wechselsweise hervor, so daß wenn der Coeffizient des 
Gliedes yo, positiv, er negativ in yt wird; daher 
der positive in y3 rc. wieder zurückkehrt; das Ge­
gentheil aber erfolgt, wo der Coeffizient des Gliedes 
y0 als negativ existirt. Gesetzt es Ware z. B. der 
Coeffizient des Gliedes y0, ein Produkt von drey 
Faktoren — — 7, — £ im Werth der beständigen
Größe a, so wird der Coeffizient des Gliedes yt das 
Aggregat je zwey und zwey, welche aus diesen drey Fakto­
ren entstehen können, und der Coeffizient des Gliedes 
y2/ wird das Aggregat der Faktoren — — 7, —
und endlich wird die Einheit, der Coeffizienten des 
letztern Gliedes, y3 seyn. Auf diese Weise, wird 
nach die in der Gleichung (c) angenommenen, fünf 
ungleichen Wurzeln », §, 7, <, .der Coeffizient des
Gliedes yo = der Coeffizient des Gliedes

yx = — (§y^ ch £ys •J*  Qs 7^«)

her Coeffizient des Gliedes

y2 = fy f f & t yfr f 7*  t
der Coeffizient des Gliedes

y? e= — (C f y f 3*  t 0; 

endlich aber der Coeffizient des letztern

74 — I 
seyn. Eben so werden wir, die Coeffizienten der 
Glieder y0, yx, y2 rc. für die Werthe der übrigen, 
beständigen Größen b, c, / rc. bestimmen. Was hin­
gegen die Nenner der Werthe a, b, c rc. betrifft, so 

wird
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wird alsbald erhellen, daß man den Nennet von a 
erhalte, wenn in der Gleichung (c) oder
(z — ei) (z — £) (z — 7) (y ... (y— ->)—0 

der Faktor r — « unterdrückt und z---« gesetzt wird^ 
so daß

(*  — €) (ct — 7) (» '—1 ))...(« — <p) 
hervorkommt, welches der verlangte Nenner seyn 
wird. Desgleichen für den Nenner von b, muß eben 
das ganze Produkt, durch z — C dividirt, und zunr 
Quotienten zaf, geschrieben werden, und es wird 
der Nenner von

1 — —------~ = o oder z2 — z — 2 = 0,
z z z '

&ci en Wurzeln «---2, € = — i sind. Es ist also das 
vollständige Integral, nehmlich das allgemeine Glied

. E y<

b= (C -») (6 - 7) (S - y.. (C - <p) 

werden. Dieses trifft auch bey den Nennern, der 
übrigen beständigen Größen c, /, rc. zu.

iz. Diese vortrefliche Methode, sott durch folgen­
de zwey Beyspiele, erläutert werden.

Erstes Beyspiel»

Es sey die Beziehungs - Scale 1 f 2
Die Indices 012 3 4 5..... x

d'ie wiederkehrende Reihe o,u,u%3u’,5u’, iiu\t„yxUx; 
die endliche Differentialgleichung

yx = yx — x - 1 t 2/x —oder
(A) yx - y x ~ 2y x — 2 o

man nehme yx == az*;  nach dessen Suftitution in 
(A) entstehet die Beziehungs - Gleichung
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yx es a»x bCx = a.2x t b (— l)x 

Ite Hypothese. x = o;af b = o;a = | 
Ute Hypothese, x ---- i;2a— b i; b --- — $

Nach deren Erfindung, entspringt
yx = < [2*  - (— i)xJ; 

also ist das allgemeine Glied der Reihe
X [2X — (— I) X) U X.

W. I. Erfinden war.

Zweytes Beyspiel.
Es sey die Beziehungs - Scale o f 7 — 6 

Indices
012 3 45 6 7 8...x

die wiederkehrende Reihe
O,U,U=,7U3,u*, 43uJ, -35uff,295U*, -503U8.. yxux 

die endliche Differenz - Gleichung
y , so. y , ""7y j. t6y =0;

x t 3 x t 2 x T1 x
cs werde yx = azx, und die vorhergehende Glei­
chung, verändere man in die Beziehungs - Gleichung 
z3 * — 7.Z f 6 = o, deren drey Wurzeln

z = (j = i;z = C = 2;z=7=-3 sind. 
Hierdurch erhalt man, das vollständige Integral der 
Differenzial - Gleichung: 
yx = a»x f b£x t c?x = a f b. 2X f c ( — 3)x.

iste Hypothese x = o ; a f b t c = o
2te - - - x = 1 ; a f 2b — 3c = 1
3te - - - xc=2;at4b f 9c = 1

Aus diesen drey Gleichungen, findet man durch die 
bekannten, algebraischen Regeln:

und
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und endlich
yx == ~ I t t. sx — 3)x.

Mithin wird das allgemeine Glied yx ux ~ 

G*  2X — /er (— g)x — Z) u\ W. z. erf. w.
16. Bisher ward von uns, stillschweigend dieje­

nige Bedingung angenommen, nach welcher alle Wur­
zeln *,  €, 7 rc. unter sich ungleich sind. Wenn aber 
etliche Wurzeln, als gleiche angenommen worden, so 
werden einige, der willkührlich beständigen Größen 
a, b, c rc. unendlich. Ist nun wirklich t = 3 z f0 
finden wir wie oben, §. 12.

a== b _ *yyo —

(et—(«— 7) ’ (»'—«-) (£—-7 ’
e --- *gy°~-GfrQy» ty3 .

(7—«) r — Q

Deshalb werden, nach angenommenen beyden, glei­
chen Wurzeln « und C, die Größen a und b unend­
lich ; die dritte c aber bleibt endlich. Eben dies wird 
auch, in andern Hypothesen von t gezeigt- wo eini­

ge Wurzeln unter sich gleich waren.
Bey dieser Unbequemlichkeit, welche sehr oft sich 

zutragt, pflegt folgendes Hülfsmittel angewendet zu 
werden. Es wird nemlich, in dem allgemeinen Glie­
de, der wiederkehrenden Reihe a* x d£x 7 C7X f rc. 
wenn C = «, dafür 6 = » f d*  gesetzt, so daß die 
Differenz zwischen beyden Wurzeln, unendlich klein 
ist. Z. B. in der wiederkehrenden Reihe der drit­
ten Ordnung, deren allgemeines Glied, eine trino- 
mische Größe, a»x f b£x t C7x ist, so geht ver- 
möge der Substitution, der zweytheiligen Größe * 
t d « starr €, das allgemeine Glied in diesen an- 

E 2 Glied
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Glied in diesen andern Mer, a«x t b (« t d »)x t4’cyx 
welcher unendlich wenig vom wahren, unterschieden ist.

Hieraufwcrwandle man, nachder Neutonschen For­
mel, das Binomium(«-j-6«)x imeine Reihe, so entstehet

ä»)x = axf xd«, «x- 1 ---- —-----d«3. *x~ 2 2C.

Daher ist L>as allgemeine Glied

(D) (afb)«xfc7xtbxdÄ.ax-1 f —-----— d* 2. «x' 2 t <C.

Wir funden oben
b — ~~ (“ X. t y-

(6 — «) ('o — y)
das ist, wenn d« statt §—«substituiret worden, ^o wird 

b_ Myyo--(<ty)yxTy2 pr «ry*  — f y) yt f y. 
d <*  (£ — y j d * (*  — y)

folglich 
«yy» - t y) yT f y.

nunmehr ist, die Größe endlich. Ist hingegen b d » 
eine endliche Größe, so wird, b d«3, noch vielmehr 
aber b d unendlich klein seyn rc, Daher wird 
das allgemeine Glied (D) =

(E) (a t t>) «x t bxd». »x-i f c y\ 
Und weil

— gyy° ~~ t
» — *=)  (*  — y) '

so entstehet durch die Substitution von — d», für«—Z,

£yyo — (£ t v) yx t y-
, — d*  (*  — r)
welche ebenfalls 'eine unendliche Größe ist. Wenn 
aber die zwey Werthe, der unendlichen Größen a und

d,
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b, zugleich mit einander verbunden werden, so ent­
springt nach Anwendung ihrer allgemeinen Ausdrücke, 
ein endliches Aggregat. Und zwar: 

, b _ gyyo—(gfv) «yy- (*t*)y*  t y< 
(*  — €) (« — y)

und durch die Division mit » — g, kommt
fy* 2 * * * * * —• cey — gy) y0 f (« f g) y, — yg

— y) (g — y)

hervor, welcher Ausdruck, von den Unendlichen frey 
ist. Mithin wenn £ = » gemacht wird, so bekom­
men wir endlich

, b __ Oa — 2 -ey) y„ f 2 «yT "yf ,

(«• — 7)2
Dey dem allgemeinen Gliede (E) erhält man die Coef- 
fizienten der Größen »x und x*x- T, welche beyde end­
lich sind, nebst den exiftirenden Coeffizienten b d *8, 
b d »*, rc. der Glieder

,x-, 31 O Äx-T!c.

2 2. 3
welche dieserwegen weggelassen worden. Wenn daher 
a t b = a',; bd« =3 bz festgesetzt wird so erhalt das
allgemeine Glied die Form:

yx = az f bz X* x " 1 t c y^

Ich schreite nun zu jenen wiederkehrcnden 
Reihen, bey denen die Beziehungs Gleichung
drey gleiche Wurzeln hat, und nehme als allgemeines
Glied der R.eihe

werden die Brüche auf einerley Benennung gebracht, 
so findet man
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yx = a«x b£x f cyx f föx, 
an, in welchen «=:€:= y, Damit aber die Gleich­
heit dieser Wurzeln, ohne Irrthum aus der Mitte 
weggenommen werde, so beobachte ich eine unendliche 
kleine Differenz unter ihnen, indem ich c = « f d x; 
y = <*  f d £ setze; so wird das allgemeine Glied 

yx = f b f d «)x f c (« f d £jx f f^x: 
Durch Anwendung der Neutonschen Formel, und 
durch die Annahme dreyer Glieder für jedes Bino- 

nium, erhalten wir
(k) = (a f b c) f (b d « c d £) x«x ~ 1 •j*  ( bd«2 's*

X ( X -
ed£2) ——- c* x“2 t f£x

Im §. 12. haben wir gefunden

— yx — (» t y t *)  y, t yT
(« — £T) (_«. -— y) (st — ä J

7 _ — otv^y01 t «y t y^ y^,— O t y t y- f y?
tC —66) — y) !-g — 5*)

«££yo *b  (»£ *b  «31 £^) yT — C* j*  ” j* y2 ff y?
i y — <*)  (y — £; (y — <9

, ___ -- «gyy0 * (*C  t «y t £y) y*  — (<*  f £ f y) ya fry, 
’ *"  ' "(F2- *)  A — §) — y) '
Es werden daher wegen <*  = £ = y, die Werthe 
der Coeffizienten a, b', o,. unendliche, der zweyten 
Ordnung; nur der Werth des letztem f, ist bloß end­
lich. Obgleich die einzelnen Werthe a, b’, c, eine 
unendliche Größe, der Zweyten Ordnung ausmachen, 
so wird doch ihr Aggregat, als endlich genommen; 
denn nach geschehener Reduction der drey Werthe, 
auf einerley Nenner, und vermittelst der Division 

durchs
0 -
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6) (« —. y) (§ — 7) wird endlich gefunden
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bte augenscheinlich eine endliche Größe ist; substitui- 
ret man «, statt § und 7, so entsteht eben dieselbe 
Summe:
„xt-x _ ("313yo13* ay.3»y» ty$ 
afbfc.ss------------------- ---------------- ------------------------------

Desgleichen in den Werthen der Coeffizienten b, c, 
substituire man « f d » für C, und * t d € fär 7, 
sodann multiplizire man b mit d«, und c mit dC; 
wenn dies geschehen, so findet man

er
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Diese Werthe bringe man, unter gemeinschaftliche 
Benennung, und nehme deren Summe, welche nach 
geschehener Division, durch d*  — df, mit Auslassung 
der Glieder, die durch die Vergleichung verschwinden, 
folgende ist: 
bd« + cd*  - o — (2«3 f — >3)y, f y,

(*  — Jj2 
welche gleichfalls eine endliche Größe ist.

Zuletzt multiplizire man bd«, mit d» und cd& 
mit d* ; die hieraus erfolgenden beyden Werthe, brin­
ge man unter gleiche Benennung, und nehme deren 
Summe, die nach geschehener Division, mit(d«—d£) 

(«— und Auslassung der unendlich kleinen Glie­
der, seyn wird:

(t — £ 
und zwar gleich einer endlichen Größe.

Wenn man also in dem allgemeinen Gliede (F) 
a •j*  b c = a; bd<efcdC=b'; b d ®ä f c d €2 = c/ 
nimmt, die zwar alle nach dem brsher erwiesenen, 
endliche Größen sind, so erhalten wir das allgemeine 
Glied

X (x '— 1)
yx =s a' ctx ’s x b' » x - * f ---------------cz « x - 2 f

Im vorhergehendem Calcul der Neutonschen Regel, 
nehmen wir drey Glieder, in jedem Binonium an, 
so daß die darauf folgenden Glieder, unendlich kleine, 
oder verschwindende sind, also würde das vierte

(bd* 9 f cdC)
X (x--l) sx-2)

2,~

seyn;
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seyn; wobey wegen" b, c, als unendlichen Größen der 
zweyten Ordnung, der Coeffizient (b d »3 fcd£3) ein 
unendlich kleines der ersten Ordnung wird, es kann 
also das vierte Glied, noch sichrer aber das fünfte 
und alle übrigen folgenden, wegbleiben.

18. Durch gleiche Art zu schließen, findet man 
das allgemeine Glied, der wiederkehrcnden Reihe . 

yx ---- a«x 4 f cyx | px 4 b-x t rc. 
woselbst vier Wurzeln gleich sind, als

folgendcrmaaßen ausgedrückt:
yx = (a-f bf c ff/)aXt (bd-e tcdf f/dy) x*x - 
tcdS,w/(x“2—-1 '&*•:  t cd?’ t /d-/>

X fx — I) (x — 2) ax - 3 
T?3

wo nicht allein der Coeffizient -
a f b f c f /,

als absolut endlich gezeigt wird, sondern auch idje 
übrigen endlichen, Trimonialcoeffizienten, dargethan 

werden; als
bd-rffcd§ff^dy, bd* 2 cd£? 's/*dy a, bd«3 cd§^ ff/'dy3, 

obgleich die Art der unendlich kleinen Größen, fälsch­

lich angegeben wird.
Bey der Hypothese der vier gleichen Wurzeln, 

wird nicht über das vierte Glied der Neutonschen 
Regel fortgeschritten, so daß das §te, vorzüglich aber 
das 6te und alle folgenden Glieder, ihrer unendli- 
chen Kleinheit wegen, verschwinden. Es kann daher 
des Gliedes Coeffizient

a
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a f b f c.f/= az;

. des Gliedes x* x-z Coeffizient
bd*  t cdb -f /dy = bz;

des Gliedes

Coeffizient
bd* 2 cd£2 /"dy® 3= cz

und endlich des Gliedes
x (x — i) (x — 2)»x - ’
—---------- 7--------------------- Coeffizient

2 . 3 i
"bd* ’ t cd§' t /dy3 = f'

angenommen werden; hingegen das allgemeine Glied 
der Reihe yx, kehre man um in diesen:

yx=az*xtxbz*x -1 f
2-3

/z«x ~3 t I"x t rc.
Aus dem bisher gesagten, weiß jeder, was bey 

allen den Beyspielen geschehen müsse, wo mehr als 

vier gleiche Wurzeln, der.<Gleichung vorkommen; denn 
es verbleibt beständig, bey einerley Gesetz und der 
ganze Calcul, wird hierdurch sehr erleichtert. Diese 
besondere Hypothese der gleichen Wurzeln, durch ein 
Beyspiel zu zeigen, wird .hier nicht an unrechtem

Orte seyn.

Beyspiel.

Es sey die wiederkehrende Reihe
° i 2 3 4 § .......x
1 ir 8u t 27U2 f 641? t 125U4 f 2i6u$ ...../xux 

welche aus dem Rationalbruche

X t
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,x z$u + u
(l — U)*

entwickelt wird. Hieraus erhellet, daß die Bezie- 
hungs - Scale 4 — 6 f 4 — l, und folglich das 
allgemeine Glied 

seyn werde, woraus die endliche Differenzialgleichung 
yx — 4yx-z f 6yx-2 — 4YX-3 t yx-^ — O 

erfolgt. Es sey yx => az*,  die vorhergehende Glei­
chung aber verändere man, in die Veziehungs- 
Gleichung

7*  — 4Z’ t 6z3 — 4z f 1 == o,
welche in der That, nichts anders ist, als (z— 
Folglich hat die Beziehungs - Gleichung, vier glei­
che Wurzeln, nehmlich

Daher ist in der jetzt gefundenen Formel des allge­
meinen Gliedes:

subftituiret man die Einheit für », so erhalten wir

so entstehet endlich das allgemeine Glied:
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yx = a' t b"x f czzx8 f /’//x3 

Es werden ferner vier willkührlich, beständige Größen 

az, d", c",/" bestimmt, wenn man für x nach und 
nach, o, i, 2, 3 annimmt, woraus die Werthe erfol­
gen , die dem allgemeinen Gliede >x entsprechen, 
als: i, 8/ 27, 64, so Wienachfolgende vier Gleichun­
gen:

az =X
az bzz ch czz 's — g 
az f 2bzz f 4czz f 8/ZZ = 27 
az f 3 b" f 9czz f 27/zz = 64, 

aus deüen
az = 1: b/z =□ 3 ; czz = 3 ; f“ --- 1 

hergeleitet wird. Wenn dies geschehen, so erhält man 
*x = 1 t 3X t 3X= t x3 --- (I t x)7, 

und folglich 
yx ux = (1 f x)3 u*  W. 5. erfinden w a r.

Uebrigens wird in diesem Beyspiel, eben dasselbe 
auf eine andere, von unserem Autor angegebene Art, 
erhalten. Nehmlich wenn das allgemeine Glied der 
Reihe, Y genennet wird, die vier denselben vorher­
gehenden Glieder hingegen, zy,<zzy, z//y, z///y, f0 
bekommt man unter besagter Bedingung, Y es 4 'y 
— 6 Z/Y f 4 ZZZY — ZZZZY, d. i. ZZ"Y — 4 "'y f 6 
/ZY — 4 ZY t Y = o, oder wenn die einzelnen Glie­
der, auf jede vier folgende Stellen, übertragen 
werden, so ergiebt sich die Gleichung

X-4 Yz t 6 Yzz-4 Yzzz t Yzzzz aos 
(§. 22. Cap. L). Daher die Sache darauf hinaus- 
laufr, daß die endliche Differenzialgleichutzg

Y sä o,

nach 
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nach der Hypothese, integrirt werden müfte, daß Ax 
beständig, und der Einheit gleich sey. Aus dem vor­
hergehenden aber, ist bekannt, daß 
sA4Y=ZVY= a A x
SA3Y = A2Y = Sa A x t= ax- f bAx

, . , „ ax2 ax.
SAaY = A Y = Säx i f bxfcAx=——tbxfcAx

Y=J Y = S——^s—fzbxfcx t/=3

Nimmt man also
a

3
so bekommt man wie vorhin, das allgemeine Glied 

der Reihe
Y = a' f b"x t c"xa f

Wer von der Integration, endlicher Differenzialfor- 
mein, mehr zu wissen verlangt, der halte sich an die 

berühmten Mathematiker La Grange, La Place^ Monge^ 
Condorcet je», welche in den akademischen Memoiren 
von Turin. Berlin, Paris, hiervon sehr häufig, und 
bündig gehandelt haben.

Anmerkungen zum IIL Capitel des l. Theils.
Um die neue Theorie unseres Verfassers, von der 

Natur der unendlich kleinen, und unendlichen Grö-. 
ßen, als auch deren wechselseitigem Verhältniß, ge­
geneinander, auf einen klaren Sinn zu bringen, und 

allen
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allen Schwierigkeiten und Streitigkeiten, den Zugang 
Zu verschließen, welche sich gegen dieselbe noch stärker, 
als sie von unserem Autor, kaum hervorgebracht wor­
den ist, von allen Seiten erhoben; so wird es der 
der Mühe werth seyn, sie dergeftallt zu erklären, als 
wenn zwischen ihr, und der berühmten Neutonschen 
Lehre, von den ersten und letzten Verhält­
nissen oder Gränzen, beynahe ganz und tgar, 
kein Unterschied wäre. Folgende Grundsätze müssen 
daher, besonders festgesetzt werden»

1) Wenn eine gewisse Größe a, entweder durch 
Anwuchs oder Abnahme, einer andern gegebenen L, 
ohne ihr je gleich zu werden, immer mehr und mehr 
naher kommt/ so daß sie von ihr, nur Um eine sehr 
geringe Größe, unterschieden ist, und zwar einer noch 
kleiner, als jede gegebene, so wird diese Größe L, 

dieGräuze der erstem A genannet»
So ist I. die Tangente jeder Curve / -die Gränze 

aller.Sekanten.
II. Der Bruch i-, ist die Gränze dieses Dezimal^

buches
0,333333333 rc.

III. Die Einheit ist die Gränze der Summe, die­
ser geometrischen Progression:

l .t '5 t Y t Ä f T5 t & U. s. W.
bis ins Unendliche.

iv. Die Größe a s a, ist die Gränze der Sum­

me der Progression,

4 16 1 64 256
bis ins unendliche.

V.
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V. Die Quadratwurzel aus 2 ist die Gränze des 
Verhältnisses, welches dieDiogonalliniedesO.ua- 
drats, zur Seite hat.

vi. Endlich die Summe der abnehmenden, geome­
trischen Progression

bis ins Unendliche, hat zur Gränze---------

nehmlich (wie aus den vorhergehenden Beyspie­
len zuersehen ist) die Summe der Progression, 
kommt dergeftallt je mehr und mehr, dem Wer-

the- - - - - 7 näher, so daß ob sie gleich ihm nic-
a ■— ba

mals gleich wird, dennoch von demselben, um 
eine sehr geringe, und noch kleiner, als jede ge­
gebene Größe, unterschieden seyn könne; dieß 
aber fiießt daraus, daß wenn die Progression, 
nicht bis ins Unendliche fortgesetzt wird, und ihr 
letzteres Glied p ist, dieselbe eine allerdings ge­

naue Summe - -------- --- erhalt, die jederzeit weni-
a — b '

ger als —ist, und deren Differenz so klein, 

als man verlangt werden kann, weil selbst das 
Glied p, auch bis zur äußersten Fortsetzung der 
Progression, klein wird. Gleichwie nun p dem 
Nichts oder o, immer näher kommt, uno doch 
niemals gleich wird, so ist also o selbst, die 
Gränze des Gliedes ?, Eben so ist auch

der
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der Bruchs------- --, die Gränze des Bruches
a b

welcher mit dem vorigen, nie vollkom- 
a — b

men übereintrifft, wofern nicht p = o wird d. k. 
» wenn nicht für p, die Gränze derselben gesetzt 

wird.
2. Es sey y die Funktion der veränderlichen Grö­

ße x, welche durch Ax f Bxa f Cx’ f Dx4 f 2c. vor­
gestellt ist, so daß wenn x = o, y = o wird; so 
entspringt aus der Gleichung

y = Ax f Bx9 f Cx3 f Dx4 f 2C.
mit x dividirt:>

- sa A t Bx f Cx3 Dx3 's rc.
X

Eben so ist ~ ein veränderliches Verhältniß, weil 

der Exponent desselben, eine veränderliche Größe 
ist, d. i. die Funktion dieser veränderlichen x, 
ist dergestalt beschaffen, daß sie so lange ab- 
nimmt, als die veränderliche x vermindert wird. 
Wenn nun x ---- o, so ist die Funktion y auch = o, 

und der Exponent der Verhältniß £- = a, oder viel­

mehr das Verhältniß selbst, ist = A. Es scheint 

wiedersprechend zu seyn, wenn hier behauptet wird,

J = — = A sey, weil Nullen keine Größen 

sind, und weder die eine größer, noch kleiner als 
die andere«, genannt werden kann. Allein das Ver- 
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haltniß = Az ist in der That kein Verhältniß der

Nullen, sondern eine Gränze, tvelrfter — sich un- 
ix

aufhörlich nähert, indem die veränderlichen x und y 
stets abnehmen, eine Gränze welche das Verhält­

niß —, nicht erreichen wird, so lange x und y wah­

re Größen sind, sie mögen so klein seyn, als sie wol­

len. Das Verhältniß -- = a, ist dasjenige, vermö-
X

ge welcher die veränderlichen x und y verschwinden, 
oder aufhören, Größen zu seyn. Hier ist also die 
Gränze der Gleichung, gewiß und bestimmt. Man 

kann also die Gränze der Verhältnisse 3- = a, das 

letzte Verhältniß der veränderlichen y und x nen­
nen, und zwar in sofern, wenn y und x verschwin­
den, oder aufhören Größen zu seyn. Gedenket man 
sich die veränderliche x — 0, als wieder zunehmend, 
so wird auch die Funktion y, mit derselben zugleich 

auwachsen, und also das Verhältniß £ = a, hin­

wiederum diejenige seyn, mit welcher sie zu wachsen 
anfangen; Also kann die Gränze dieser Verhältnisse 

X_ welche A ist, deshalb das erste Verhältniß, der 
x
veränderlichen Größen y und x, mit welcher sie zu 
wachsen anfangen, genannt werden. So wird auf 
diese Art, die Lehre unseres Autors: daß unendlich 
kleine Dinge, in der That Nichts sind, und daß zwi­

schen
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fchen zwey, unendlich Kleinen Dingen, jede Ver­
hältniß dazwischen treten können, auf einer wahren 
und deutschen Sinn gebracht. Das Verhältniß der 
unendlich kleinen Dinge, ist wirklich kein Verhältniß 
von Nichtsen, sondern das letzte Verhältniß, 
wodurch zwey veränderliche Größen erzeugt werden, 
oder anfangen Größen zu seyn. Oder mit andern 
Worten: das Verhältniß des unendlich Kleinen, ist 
nichts weiter, als diese Gränze, welcher sich das Ver­
hältniß der veränderlichen Größen, immerfort nähert, 
die sie niemals erreichen, noch weniger überschreiten 
kann, sondern der sie, für jede gegebene Differenz, 
näher kommt. Mit einem Worte: die letzten Ver- 
haltnisse verschwindender, und die ersten entste­
hender Größen, sind keine Verhältnisse derselben, un­
ter sich, sondern bloß allein die Gränze, aller ver­
änderlichen Verhältnisse. In dem paradoxen Aus- 

Druck kann die verborgene Gränze, durch folgen­
den Vernunftsschluß aufgedeckt werden; es ist nehm­

lich I — —p da aber a:b = XI~ folglichver-

b x
halt fi$ a f x : b f —- = a: b, und

a f X — a:bf - b = a:b. Deshalb wird

a
Söenn daher x Null wird, so wird die-Gränze der 

beständigen Verhältnisse, rmt |—ä .2. äguiret.

§ 2 3*
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3, Jede veränderliche Größe, kann nicht nur be- 

stöndig abnehmen, und zuletzt gänzlich verschwinden, 
sondern auch beständig, und bis ins Unendliche, ver- 
mehret werden. Es sey:

y c=3 A t Bx f Cx2 . ♦ . f H xn ’ f K x n, 
so erhellet aus dieser Gleichung, daß wenn X unend­
lich vermehret wird, y auch bis ins Unendliche zu­
nehmen werde. Daraus aber wird hergeleitet:

y
woraus folgt, daß das Verhältniß —, und deren 

Exponent, veränderlich sey, und zwar, daß wenn die 
veränderliche Größe x, nebst y unaufhörlich zunimmt, 

der Exponent derselben ebenfalls, beständig abneh­
men werde, und zwar in allen abnehmenden Glie­
dern, außer dem letzten beständigen Gliede. Gesetzt 
X = oc, so wird vermöge dieser Hypothese, auch 

y
x = 00 ; der Exponent der Verhältnisse-^, wird gleich 

der beständigen K; die übrigen Glieder gehen wegen 
x = 00, in Null über. Dem zu Folge, was wir 
vorhin in Betreff, der unendlich kleinen Größen, er­

innert haben, ist das Verhältniß ~=a K, eigentlich 
XB

zu reden, kein Verhältniß, der unendlich Großen y 
und xn unter lsich; >lweil es nicht möglich ist, daß 
zwey unangebliche Größen, unter einander vergli­
chen werden können, sondern die Gränze der Ver­
hältnisse, welcher die veränderlichen unendlich zuneh­
menden Größen y. und x°, sich immerfort nähern, je­

doch
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doch niemals erreichen, so lange selbige bestimmte, 

und angebliche Größen sind, folglich ist ~ = k 
X”

letzte Verhältniß, wodurch die Größen y und x*  
aushören, angebliche zu seyn. Es wird daher der 
sehr gemeine Satz, des Infinitesimalcalculs, richtig 
verstanden, daß nehmlich die Größen und ihre Ver­
hältnisse, wenn deren Unterschied gegeben ist, zuletzt 
gleich werden, wenn sie unaufhörlich fort zunehmen, 
so daß sie jede gegebene Größe übertreffen. Gesetzt 
A, ß wären unendlich wachsende Größen oder Ver­
hältnisse, deren gegebene Differenz d, jederzeit bestän­

dig sey. Man nehme daher eine andere gegebene, 
und beständige Größe a, und setze die Analogie A : d 
== a : d, so ist klar, daß wenn Azunimmt, d propor- 
tionirlich abnimmt, und zwar dergestalt, daß wenn A, 
jede gegebene Größe übersteiget, d unter jede gege­
bene, abnehmen werde. Da nun A_tD : d = a rf_ 
d ♦ d, weil die zwey Größen a und a j^d, wenn d 
unter jede gegebene herabsinkt, und zuletzt oder bey 
der Gränze verschwindet, gleich werden; so werden 
auch die Proportionalgrößen A und A Dober Au.B/ 
die eine gegebene Differenz d haben, zuletzt zur 
Gleichheit gelangen. Folglich, gleichwie durch bestän­
dig .abnehmende, gegebene Größen und Verhältnisse, 
die kleineren letzten Proportionen, bestimmt 
werden, welche an der Gränze, stets abnehmender 
Größen statt finden, so werden auch durch unendlich 
zunehmende, und jede gegebene Größen und Ver­
hältnisse, hje letzt größern Proportionen be­
stimmt, die an der Gränze immerwährend zuneh­

men- 



86 Anm. zu Eulers Differenzialrechnung.
mender, sich befinden. Zwischen diesen beyden äußer­
sten Gränzen, ist es zwar erlaubt, die Gränze der 
Abnehmenden zu erreichen und zu entdecken; allein 
die Gränze der Wachsenden, erlangt man eigentlich 
niemals, de»n obgleich die Größen, jeden gegebenen 
Terminum, zunehmend überschreiten können, so kön-. 
neu sie doch nie, absolut unendlich werden.

4. Es bleibt daher in der Differenzialrechnung, 
unveränderlich fest, daß diejenigen Größen oder Ver­
hältnisse, niemals angenommen werden, deren ob- 
schon kleine Differenz gegeben ist, sondern nur die, 
deren Differenz, über jeden angeblichen Terminum 
abnehmen, verschwinden und Null werden könne, so 
daß man die Gleichheit der Größen, und Verhält­
nisse, bloß an der äußersten Gränze erlangt, wel­
ches sie sich über jegliches Maas nähern, und ohner- 
achtet es sich öfters zuträgt, daß die Größen, deren 
Proportion an der Gränze erforscht wird, hinwie­
derum verschwinden, so bleibt nichts desto weniger, 
die Proportion der Gränze, die einzig und allein 
nur gesucht wird, stets unverändert.

5. Durch die Benennung: Differenzen, Flu- 
xionen, Elemente, Incremente, Decremen- 
te, Infinitesimalgrößen, und wie sie immer 
genannt werden mögen, haben wir nichts anders, 
als die kleinern Differenzen, bezeichnen wollen, wel­
che immerfort abnehmen, und deren sich selbst, die 
ältesten Mathematiker bedient haben, aus denen wir 
die Gleichheiten, und letzten Proportionen, die nur
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an der Gränze statt finden, mit Sicherheit herlei­
ten. Um der Kürze willen, eignen wir die Gleichheit 
der Gränze, nur denen Größen und Verhältnissen 
zu, welche eine stets abnehmende, und unangebliche 
Differenz besitzen, jedoch keinesweges, ldaß wir die­
selben als gleich betrachteten, so Lange sie noch, die 
kleinste Differenz behalten; sondern wie bekannt nur 
dann, wenn ihre letzte Differenz, an der Gränze 
Null wird, woselbst sie auf das genaueste', gleich wer­
de. Es würde daher für den Differenzialcalcul, von 
größeftem Nachtheil seyn, wenn sich jemand unterste­
hen wollte, Differenzen, die noch von einiger Bedeu­
tung sind, zu vernachlässigen, und für nichts zu hal­
ten. In der Analysis des Unendlichen, wird nichts 
für gering geachtet; denn wenn wir Größen und In- 
finitesimalverhättnisse, die noch mit angeblichen Dif­
ferenzen versehen sind, gleich nennen, so verstehen 
wir darunter nicht, daß sie gleich sind, so lange sel­
bige noch eine, obschon kleine Differenz haben, son­
dern daß sie an der Gränze gleich sind, woselbst de­
ren Differenz, Null ist. Wer also unendlich kleine 
Differenzen, weglassen und für Nichts halten will, 
hat bloß zur Absicht, die absolutesten Gleichheiten und 
Proportionen der Gränze, zu untersuchen und zu be­
stimmen. Hieraus ist folglich völlig einleuchtend, daß 
der Differenzialcalcul nichts anders sey, als 
eine analytische Methode, die Gränze der Verhält­
nisse zu erfinden, welche zwischen der endlichen Diffe- 
renz, zweyer Größen und deren endlichen Differenz 
zweyer andern, innen steht, die zu den beyden cr- 
stern, eine Analogie und bekannte Beziehung haben.

6. Den



88 Anm. zu Euters Differenziatrechnung.
6. Den Beschluß dieser Anmerkungen, macht das 

wichtige Zeugniß Neutons, des großen Erfinders 
der Fluxionen, welcher hiervon so vorrreflich handelt, 
(2) wenn er sagt: „Ich wollte lieber die Beweise, 
»auf die letzten Summen und Verhältnisse, der ver- 
„ schwindenden Größen, und auf die ersten entstehen- 
„den, d. i. auf die Gränzen der Summen, und 
„Verhältnisse, hinführen, und deshalb die Beweise, 
„ von den Gränzen derselben in möglicher Kurze vor- 
„aus senden. Allein wenn ich in folgenden, die Grö- 
„ßen aus beständigen Partikeln bestehend erwäge, 

/ „oder mich statt grader Linien, sehr kleiner krummen 
,, bedienet habe, so war es meine Absicht nicht, die 
„untheilbaren, sondern die verschwindenden Theilba- 
„ren, nicht die Summen und Verhältnisse von be- 
„ stimmten Theilen, sondern bloß allein, die Gränzen 
„der Summen und Verhältnisse, darunter zu vcr- 
„ stehen.

„Man macht den Ernwurf, daß es keine letzte 
-Proportion verschwinder Größen gebe; denn ehe 
„sie verschwunden sind, ist sie nicht die letzte, und 
„wo sie verschwunden sind, giebt es keine. Oder 
„auch so: Die letzte Geschwindigkeit, mit welcher 
„ein Körper, an einen gewissen Ort gelangt, wo des- 
„sen Bewegung sich endet, sey Nichts; denn ehe der 
„Körper, diesen Ort erreiche, wäre jene noch nicht 
„die letzte, und wo er ihn erreicht, sey sie nichts. 
„Die Antwort hierauf ist leicht: Durch die letzte Ge- 

„fchwin-

a (Phil, Not. Princ. Math. Lib. I. Sect, I. in fine.
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„schwindigkeit, verstehe ich diejenige, mit welcher der 
»Körper bewegt wird, und zwar weder ehe er, den 
»letzten Ort erlangt und dessen Bewegung aufhört, 
„noch dann wenn er ihn erreicht, das ist, diejenige 
„Geschwindigkeit, mit welcher der Körper, den letz- 
„ten Ort erreicht, und mit welchem seine Bewegung 
„aufhört. Eben so kann auch, durch das letzte Ver- 
„haltniß verschwindender Größen, deren Verhältniß, 
„weder ehe, noch nachher, sondern mit welcher sie 
„verschwinden, verstanden werden. Auf gleiche Art, 
„ist das erste Verhältniß entstehender Größen, dieje- 
„nige, wodurch sie erzeugt werden. Die erste und 

„letzte Summe hingegen, ist diejenige, mit welcher , 
„sie (entweder vermehrt oder vermindert zu werden) » 
„anfangen und aufhoren. Noch ist die Gränze übrig, 
„welche die Geschwindigkeit, am Ende der Bewegung 
„ erreichen, aber nicht überschreiten kann. Diese ist 
„die letzte Geschwindigkeit. Also ist das Verhältniß 
„der Gränze, aller anfangendem und aufhörenden 
„Größen, und Proportionen, gleich. Da nun diese 
„Gränze gewiß und bestimmt ist, so ist das Problem 
„dieselbe anzugeben, bloß geometrisch. Alle geometri- 
„sche Aufgaben aber, können zur Bestimmung und 
„zum Beweise anderer, rechtmäßig angewendet wer- 
„ den. “

„Auch kann man behaupten, daß wenn die letz- 
»ten Verhältnisse, verschwindender Größen, gegeben * 
"werden zugleich die letzten Größen gegeben jwerden, 
„und also wird jede Größe, aus unheilbaren beste- 
„hen, wie Euklid von den Incommensurabeln, im

„zehn-
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„zehnten Buche seiner Elemente, das Gegentheil be- 
„wiesen hat. Allein dieser Einwurf, beruhet auf ei- 
„ner falschen Hypothese. Jene letzten Verhältnisse, 
„mit denen die Größen aufhören, sind in der That 
„nicht Verhältnisse der letzten Größen, sondern Grän­
zten, denen sich die Verhältnisse, abnehmender Grö- 
„ßen, beständig nähern, und denen sie näher kom- 
„men können, als jede gegebene Differenz, ohne sie 
„jemals zu überschreiten, oder früher zu erreichen, 
„als die Größen bis ins Unendliche, vermindert wer- 
„den. Dies wird aus dem unendlich Großen, deut- 
„lichcr zu verstehen seyn. Wenn zwey, nebst ihrer 
„Differenz gegebene Größen, unendlich vermehret wer- 
„den, so wird deren letztes Verhältniß, nehmlich jene 

„der Gleichheit gegeben, nicht minder auch deren letzte 
„oder höchste Größen, welche dieses Verhältniß ist. 
„Wenn ich also im folgenden, um des leichtern Be- 
„griffs willen, von den kleinsten entweder verschwin- 
„denden, oder letzten Größen, reden werde, so hüte 
„man sich, Größen als Größe, bestimmt sich vorzu- 
„ftellen, sondern man gedenke sich darunter stets, ohne 
„Einschränkung zu vermindernde Größen."

7. Es findet d'Alembert die neutonsche Art zu re­
den,welche jedoch auch von Andern angenommen wor­
den, anstößig; nehmlich: Ein Verhältniß mit 
welches die Größen verschwinden; ein Ver­
hältniß mit welcher sie entstehen: Die »Re­
densart tadelt derselbe, als mißtönend und absurd, 
mit diesen Worten (a); Quelqucs mathematiciens ont

„defi-

(a) "Mcl. de Lit. d’Hie. et de Phil. Tom. V. Eclairc, für les 
Elem. de Phil. §. XIV.
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ssHefini la quantite infiniment petite celle qui , s’Sva- 
unouit, coufiderec non pas avant qu’elle s’evanouifte, 
3,non pas apres qu’elle est evanouie, mais dans le mo- 
„ment meme oü eile s’evanouit. Je voudrois bleu fa- 
„voir quelle Idee nette et precife on peut efperer 
„de faire naitre dans 1’ efprit par une femblable defini- 
„tion. Une quantite est quelque chofe ou rien. Si 
„eile est quelque chofe, eile n’est pas evanouie; fi eile 
„est rien, eile est evanouie tout-a-fait. C’est une chi-> 
„mere que la supposition d’un «tat moyen entre ce$ 
„deux la."

Ich sehe aber nicht ab, weswegen der berühmte 
d'Alembert, hiermit so unzufrieden ist; denn obgleich 
diese Redensarten, nicht im strengsten Verstände, ge­
nau sind, so sind sie gleichwohl, nicht nur bey Ma­
thematikern, sondern auch bey den Philosophen, im 
gemeinen Redegebrauch ausgenommen worden, um 
viele Wortumschweife zu vermeiden. Ja sogar d'A- 
lembert, mißbilliget dieselbe anderwärts selbst nicht, 
sondern empfiehlt sie vielmehr der Kürze wegen; in­
dem er sagt: (a) „Toutes les parties ües mathematiques 
„fönt souvent ufage d’expression de cette efpece, qui 
„dans le fens metaphyfique qu’elles prefentent, paroif- 
fent d’abord peu exactes; mais qui ne doivent etre re- 
„gardees que comme des manieres abregees de s'expri- 
„mer, que les Mathematiciens ont inventees pour enon- 
„cer une verite, dont le developpement et l’enonce 
^exactt auroit demande beaucoup de mots."

Mel. de Lit. d’Hift. &c. § XI. Tom. V.

Anno-
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Anm. zum 214 §. I. Theils.
Weil der Beweis unseres Autors, bloß 'auf In- 

duction beruhet, und demselben diejenige Strenge 
fehlt, welche Mathematiker, wo es nur immer mög­
lich ist, fordern, so wollen wir den Beweis selbst, 
aus d'Alcmbert entlehnen, der im Tom. iv. opufc. 
Mathem. pag. 5. denselben folgendermaaßen giebt.

„Si une quantite A contient tant de variables, 
„x, y, z &c. qtf on voudra, et qu’on la differentie en 
„faifant varier fucceffivement x, y, z &c. en negligeant 
,,les differences fecondes, troifiemes &c. on aura le 
„meme refultat dans quelqu’ordre qu’on differentie, 

d« A
..c’est-a-dire. que par exemple,---------------r dx dy dz dt etc.

d" A
:——— Mr. Euler a demontre cette pro-dz dy dt dx etc.

„pofition dans fön Analyse des infinement petits, 
„mais par une espece d'induction. Pour en donner une 
„demonflration generale et rigoureufe nous conßderons, 

dd A ddA
„I. que------- = ------- —, comme le favent Ies Geome-

dx dy dy dx
„tres. II. Nous allons demontrer que fi en general les 

dn A dn A
„quantites----------- , et -— ----- , tont egales, la me-

dx dy dz dz dx dy
„nie egalite fubfistera en faisant varier une nouvelle va- 
„riable t; ce qu’il est aife de voir en confiderant I. que 
„la combinaifon dz dy dx donne (Jiip.) le meme reful- 
5,tat que la combinaifon dz, dx dy , la Combination 
„dt dx dy dz donne evidemment le meme refultat que dt 
„dz dx dy > 11. que dtdxdydz donne le meine refultat

„que
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»que dx dtdy dz, puisque dtdx donne le meme que dx 
.-jdt; III. que dx dt dy dz donne le meme resultat que 
,,dx dy dt dz, et par la meme raison puisque dt dy don- 
„ne le meme que dy dt &c. Donc, &c. Donc puisque le 
„theoreme a lieu lorsque n s= a, il aura lieu lorsque 
„n = 3, et enfuite lorsque n = 4, &c. et ainsi de 
„suite.“ ■'? !

Diesen Beweis wendet d’Alembert, auf die ges 
meinschaftliche Multiplikation, algebraischer Größen 
an, und erinnert die Verfasser von Elementen, vor­
sichtiger zu seyn, mit diesen Worten:

„Cette demonflration pourroit fervir a prouver d’une 
j,maniere tres- simple une proposition que la plus part 
„des Auteurs elementares negligent de prouver, favoir, 
„qu’en quelqu’ordre qu’on multiplie tant de quantites 
„a, b, c, d, e &c. qu’on voudra, les unes par les au- 
„tres, le resultat est toujours le meme. On le demon- 
ajtre bien pour les produits ab, et ba, de deux quanti- 
jjtes, mais on neglige souvent de le prouver pour les 
„produits d’un plus grand nombre de quantites, quoi- 
„que la chose ne soit pas evidente par eile - meme, 
3,C’est un avis qu’on donne ici aux Auteurs d'Elemens, 
«afin qu’ils y fassent attention a I’avenir.“

Anm. szmn VIII. Capitel I. Theils.
Der berühmte De la Orange, in seiner italieni- 

schen Epistel, an Fagan, welche 1754 gedruckt wor- 
t>en!z tragt eine neue Reihe, für die Differenzialien, 

und
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und Integralien von jedem Grade, vor, welche 
mit der Neutvnschen Reihe, für die Potenzen und ' 
Wurzeln analog, ist. Diese Sache, welche ihrer 
Neuheit und Vortreflichkeit wegen, empfehlenswürdig 
ist, wollen wir kürzlich hier auseinander setzen: die 
erste von den zwey Reihen, mag daher von Neu­
ton, die andern von la Grange seyn:

I. (af b)m = amb° f —— am - 3 ba f
2

2-Z
I. Die erste Reihe, giebt die Evolution jeder Po­

tenz , zu welcher die Summe zweyer Größen 
erhoben worden, als auch jeder gegebenen Grö­
ßen, deren Exponent m für den Grad der gege­
benen Potenz angenommen ist; also giebt die 
zweyte Reihe, das Differenzial eines jeden 
Grades, aus dem Produkte, von zweyen, so 
wie auch jeden der Veränderlichen, wenn eben­
falls m der Exponent des Grades, oder der Ord­
nung des vorgegebenen Differenzials ist.

II. Gleich wie die erste Reihe, die Glieder jeder 
Wurzel giebt, welche aus der Summe zweyer, 
oder jeder anderer Größen, ausgezogen wird, 
wofern nur der Exponent m gleich, der gebro­
chenen Zahl ist, die den Grad der Wurzel an- 
zeigt, so enthalt auch die zweyte Reihe, das In­

tegral
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tegral jeden Grades, aus dem Produkte von zweyen, 
sowohl jeder endlichen, als unendlichen Größe, 
jedoch mit der Bedingung, daß der Exponent m, 
der ganzen aber negativen Zahl gleich sey, wel­
che den Grad des gegebenen Integrals, andeutet,

III. Endlich gleich wie in der ersten Reihe, der Ex­
ponent o, eine Größe anzeigt, die zu keiner Po­
tenz erhoben, und also gleich der Einheit ist, 
so bedeutet auch eben dieser Exponent o, in der 
zweyten nichts weiter, als daß in der mit ihm 
behafteten Größe, keine Differenziation, noch In­
tegration statt finde; daher muß man diese Größe 

so annehmen, als wenn sie in Beziehung des Ex­
ponenten, für Null zu halten sey.

So wie wir uns der Neutonschen Reihe, mit dem 
glücklichsten Erfolge, bey Erhebungen der Potenzen, 
und Ausziehung der Wurzeln, jeden Grades, durch 

die ganze Analysis bedienen, eben so können wir auch 
die andere Reihe mit gleichem Vortheil, bey Diffe- 
renziationen und Integrationen jeden Grades, ge­
brauchen. Es sey z. E. die Größe xy zu differenzii- 
ren. Da nun in diesem Fall, das gesuchte Differen- 
zial, von der ersten Ordnung ist, so wird m = 1 
seyn, folglich nimmt die zweyte Hauptreihe, diese 
Form an: x*y°  t x°yx, die, wenn sie auf die ge­
meinschaftliche Art gebracht worden, wie wir vorhin 
angezeigt haben, in diese verwandelt wird: .

ydx t xdy
Wenn man das 2te Zte oder 4te Differenzial sucht, so 
wird 1» sa3 oder m = 3, m = 4 seyn, und die 

der-
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verlangten Differenzialien, werden nach gehörigen 
Substitutionen für m, folgende seyn:

pj Pj

X X X

II II II
x x^ xe
V **< “ *< a 
*-£•-£ *4-  
4^ u> u 
X^ X*  XH 

*<*  v *<r

►+ •+ •+
Cx vj
X X,

s<“

•+ •+ ]|
4x 
xw xo

“* " X
•4*  || -+•
% 7L a-*< w x
* X Gu 

|] —b *4*
-C g.
d. §2 
x*  a.

*-b1 t»
K d.

« xX pu
(X o»^■4

•4*  *~b  o Cu X 
ra p»
P-*  
o- ***'
Tb
-b-
Oa
Xpu

-b
XPu

•V

Eben so wird auch das DLfferenzial jeder Ordnung, 
auf die leichteste Weise erhalten werden, wenn nehm­
lich dx, als das erste veränderliche Differenzier ange­

sehen
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sehen wird, oder auch die Glieder weggeftrichen wer­
den, welche die Differenzialien von dx enthalten.

Uebrigens wird die Reihe H, auch auf die Er- 
sindung der Integralien, die Neutonsche aber, auf 
die Ausziehung der Wurzeln, angewendet werden 
können B. Man soll durch die.Integration des 
Elements ydx, einer krumlinigten Fläche, die unbe­
stimmte Quadratur einer Curve finden. Man Nehme 
also nach der allgemeinen Regel, dx — x an, so 
wird nach dem, was wir vorhin angemcrkt haben, 
m = — 1 seyn, worauf wir nach geschehener Sub­
stitution der Werthe, nach der 2ten Regel, die beson­
dere Reihe:

dx-Iy° — dx-3/*  f dx~’ya — dx~ 4y*  f dx - ?y4 2C. 
erhalten werden. Es bedeutet aber dx-', das Inte­
gral von dx; dx-2 das Integral des Integrals von 
dx (d.i. das Integral der Größe x) welches ich das 
2te Integral von dx nenne, und es durch das Sym­
bol 2/dx bezeichne. Eben so drückt auch dx-3, das 
dritte Integral von dx, nehmlich 3/dx ; dx -4 das 
vierte Integral oder ydx rc. aus. Es ist nemlich

/dx = x

dx 2 dx’

---------~ /—-—- es - ■ ... . *
2.3 dx2 J 2.3 dx5 2.3.4dx3 ’

und Ueberhaupt

in/dx es —----------------- -—-------
2.3.4 . . . mdx'u - 1

Wenn
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wenn nemlich dx, jederzeit als beständig angenom­
men wird. Wenn nun die Werthe, in der vorher-, 
gehenden Reihe, subftituiret, und wie gebräuchlich 
dy, ddy, d’y rc. statt yz, y3, y’, rc. gesetzt werden, 
so etheller endlich

Diese ist also, die so sehr geschätzte Bernourllische Rei­
he (a) welche allen Geometern schon längst bekannt ist.

Uebrigens wird diese zweyte Regel, nicht allein 

des die Jntegrirung, der Differenzialien des ersten 
Grades ausgedehnet, sondern sie leistet auch sehr ge­
schwind, durch eine einzige Operation, die Integra­
tion der Differentialien, jedes noch weiter gehenden 
Grades. Man verlangt z. E. das zweyte Integral 
des Produkts dydx; wenn nun m = — 2, x= dx, 
und y = dy gemacht worden, so erhalten wir: 
*J dydx = dx~3dy°— 2dx“’dy1 f 3dx-*dy s—4dx~$dy1 f rc.

Weil aber dx beständig, so ist a/dydx = yydx und 
das vorhin gefundene Integral

so werden deshalb unter sich, je zwo Reihen äquiret, 
welche aber von unzählich verschiedener Art sind, d. i.

deren Gleichheit ein wenig verborgener ist, die aber 

auch erhalten wird, wenn auf beyden Seiten, alle
Glie-

fa) Jo. Bern. Oper. Tom. I. N. XXI.



Anm. zu Eulerö Differenzialrechnung. 99
Glieder aufgehoben werden, so daß nur eins, auf 
beyden Seiten übrig bleibt, nemlich dydx.

Anm. zum 324. §. I. Theils.
Vermöge der gegebenen DifferenzialgleichuNH, 

Welche drey veränderliche Größen in sich enthalt 
(A) Pdx f Qdy f Rdz 

und der daraus hergeleiteten Beziehungs- Gleichung 
von der Beschaffenheit

setzt unser Autor überhaupt diese Regel fest, daß 
nehmlich da, wo die endliche Gleichung (B), weder * 
identisch ist, noch diejenige Beziehung der veränder­
lichen Größen X, y, Z/ darbietet, welche der Diffe- 
renzialgleichung (A) Genüge leistete, keine endli­

che Gleichung gefunden werden könne, die 
für dieselbe hinreichend wäre. Allein diese Regel, be­

sitzt nicht diejenige Ausdehnung/ welche Euler der­
selben zueignet, sondern sie muß, durch eine Um­
schreibung dahin gezwungen werde, wie zuerst der 
berühmte de la Place, scharfsinnig wahrgenommen hat, 
in seiner vortreflichen Dissertation für les folutions 
particulieres des Equations differentielles, et für les in- 
egalites feculaires des Planeres. In Actis Reg. feint. 
Paris. Acad. an. 177a. Gesetzt es wäre die Differen­
tialgleichung:

dx = 1 y — z — y) t a V" (x—z—-y) f b-Z 

^XÄ1*~y)]>dy  t[ityV*(x —z—y)J dz;
G a diese 
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diese giebt mit (A) verglichen

3 4- 3
Pcal/ Q = I tv*(x — z — y) [z t av"(x—z —y) — b

3
(x — z — y)], R=3lfyZ(x — z — y\

Werden nun diese Werthe, in der Bedingungs - Glei­
chung (ß) substituiret, so erhält man nach der be­
schwerlichsten, und weitläufigsten Rechnung, die lu 

mansche Gleichung

yf 2-xt®"=0'

welche weder identisch ist, noch der Differenzialglei- 
chung Genüge thut. Nichts desto weniger giebt eS 
dennoch/ zwischen den veränderlichen Größen x, y, z, 
eine Beziehung, welche eben dieses leistet; so ist 

nemlich x y t z/ auf das augenscheinlichste, für 
die Differenzialgleichung hinreichend. Hieraus ist voll­
kommen klar, daß die Eulersche Regel, in kürzern 
Ausdrücken enthalten sey, als vom Autor gefodert 

wird.

Anm. zum n J. II. Theils.
Unser Autor versichert an diesem Orte, in der 

Einleitung gezeigt zu haben, daß beyde Reihen

und | t^ t-T.s
Den hyperbolischen Logarithmen von zwey, 
darstellen. Allein ich habe in der angeführten 
Einleitung, zur Analnsis des Unendlichen, 
alles angewandten Fleißes ohngeachtet, diesen Beweis 

niche 
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nicht finden können *),  daher ich diesen Mangel hier 
ergänzen will. Aus der Theorie der Logarithmen ist
bekannt, baß **)

setzt man daher x ---- i so wird
l2--- i — 1 t f — itl - 11 k. seyn. 
Wird x ö — G angenommen, so ist

((! f x) = U = — ~— 

folglich wird wegen l 2 =

I 2 = 1 — I —

1______ 1______
2.2' Z.2' JF
— l | entstehen, *̂*)
5 t I ~ i f 2C.

W. Z. E. W.

2lnm. nach §. 45. und folgenden II. Theils.
Obgleich der bewundernswürdige, und vortrefliche 

Taylorsche Lehrsatz, unzählig in der gesammten 
Mathematik, angewendet wird, und die herrlichsten 
Auflösungen der schwersten Aufgaben, als auch die 
Beweise der erhabensten Lehrsätze darbietet, so muß 
man dennoch sehr behutsam, im Gebrauch desselben 
verfahren, um nicht zu Fehlern und Irrthümern, 
verleitet zu werden. Man würde daher sich sehr be­
trügen, wenn man allgemein behaupten wollte, daß

jeg-
*) Auch Hr. Pros. Michelsen sagt dieses, in seiner vor- 

Uebersttzung 2ter Th. Seite 10. N»>te.
v Th. 1. ä 123.

***) 1.2 == __  1 Q*  __2 KS _ 1 (li __I2J =__ 1*.  
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jede Funktion der binomischen Größe x -f- a d. i. 
o (x t a) durch den Taylorschen Lehrsatz, je­
derzeit in der unbestimmten Reihe:

als gleich angenommen werden könne. Da hingegen 
^dieser Lehrsatz, in der ganz einfachen Hypothese, 

durch welche * (x f a) = [Sin. (x f a)p, gesetzt 

wird, ganz unrichtig und falsch befunden wird, in­

dem die Größe [Sin. (x f a)]3, welche jederzeit in 
Beziehung, auf den Taylorschen Lehrsatz, endlich ist, 
oder im zweyten Gliede einen unendlichen Werth be­
kommt, wo x — o; es wird nemlich die Reihe = 

in der Hypothese x = o. Durch dies einzige Bey­
spiel, wird jeder vorsichtige Geometer, bey Anwen­
dung dieses Lehrsatzes, gewarnet, sich desselben mit 
aller möglichen Behutsamkeit und Scharfsinnigkeit zu 
bedienen, indem sich oft die berühmtesten Mathema­
tiker, dadurch haben irre führen lassen.

Es ereignet sich auch bisweilen, daß nach dem 
Taylorschen Lehrsatz, wenn derselbe auch nicht irrig 
gebraucht wird, die Auflösung eines vorgegebenen 
Problems, weit weniger offenbar ist, als sie wohl 
seyn sollte, und daß dieselbe durch eine andere, und 
sichere Methode, erhalten werden könne, wie aus fol­
genden Beyspiel deutlich erhellen wird. Es wird auf­
gegeben eine solche Funktion <t> (x) der vcranderli-
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chen Größe x zu finden, vermittelst welcher ®(xfa) 

& «v (x) erhalten wird, wenn die exiftirende Größe 
a, gegeben worden. Aus der Formel » (x) ist offen- 
bar, daß man die Ordinate dieser Curve erhalte, in 
welcher, wenn die Segmente in der Axe = a, an­
genommen werden, die Ordinären vermittelst dieser 
Größe, in gleicher Weite, gleich seyn werden. Dies 
geschiehet in der Cykloide, wenn a mit der Peripherie 
des erzeugenden Kreises, äquiret wird. Hieraus ist 
klar, daß die Größe <t> (x), mit unendlichen willkühr- 
lichen Werthen versehen sey, welche sämtlich dem 
Problem Genüge leisten, wofern o (x) die Ordinate 

vorbesagter Curve, darbietet. Wir wollen jetzt»(xfa) 
nach dem Taylorschen Satz, in eine Reihe verwan­
deln, so ist <t> (x) = <$> (x t a) =

Hierdurch erhalt man die Gleichung:

Es sey e die Basis hyperbolischer Logarithmen, und 

dx ,
4» (X) = A e ; diesen Werth subftituire man tn vor­
hergehender Gleichung, so erfolgt nach geschehener 

fax
Division, .durch Ae , die Gleichung 

folglich wird eah —- 1 ss o seyn; gehet man nun von 

Zahlen, auf Logarithmen zurück, so entstehe; 
a h = l 1. Nach Eulers Erfindung hingegen, is
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h = t m r /  i, wenn m.als jeder ganzen, 
Zahl, zugleich mi; o vorhanden ist. Also

m x \T — I 
ah — f m % V" — 1 , und h = jr------------------- ,

— a
und folglich

4,m w x
r--------  V* ----I _ m<rX4.n;_ m»x®(x) = Ae~ az =A(Cof.-------fSm.----- t)/

3 ‘d

oder gesetzt a f — i = B, so erhält man endlich:
„ . m»x . m*-x

O (x) = A Cos. ----- _L B Sin.------
a a

Allein es scheint, als wenn die Form dieser Funktion 
<$> (x), nicht diejenige Allgemeinheit besäße, die sie 
haben sollte. Man nehme daher, den Kreisbogen v, 
uni) des Diameters Abscisse i — Cos. v; man ziehe 

die ordinate x, bis zu derselben Curve, in welcher 
man x = v — sin v bekommt; es sey ferner die Ab- 
sciffe der Curve i — Cos. v, gleich der Funktion der 
Ordinate x, oder (x), so wird

X is= V — An. V --- Cv" t Dv? f Evr ch rc. 
seyn, und man findet durch die Umkehrung der Reihen, 

v ~Fx 7 f2C.; folglich-p (x)---1 — Cos. V = I — Cos. 

(F x 3 f rc.). Wenn nun der oben gefundene Werth

4» (x) = A Cos.
m «r x , nur x
-------t BSin.--------

a —■ a 

mit der gehörigen Allgemeinheit, versehen würde, so
enthielte derselbe, den andern Werth

i — cos. (Fx v t rc.)
oder welches einerley ist, die Grösse

i — Cos. (Fx 7 f rc.),

könnte in die Reihe dieser Form: A' Sin. » x f B' 
sin. 



Anm. zu Eulers Differenzralrechnung- 105

sin. 2 x x f Cz fin. 3 :*•  x 's*  K. . . . •J*  Hz Cof. * x 
t y cos. 2 » x f?2G- umgekehret werden, so wie auch 
(durch die bekannten analytischen Lehrsätze der Tri­
gonometrie) in die Reihe

A" B/z * x 7 C/z ** xa f Dz/ »3 x’ f E/z x*  f 2c, 
in welcher nur ganze Potenzen, der veränderlichen 
Größe x, vorhanden sind. Dies' widerspricht aber 
der Evolution der Formel

1 Cof. (Fx 1 f rc.),
die wie bekannt

A'/z x Tt B/z/ x 7 t 2C.

giebt, wo die gebrochenen Potenzen von x, keineswe- 
ges vermieden werden können. Hieraus ist also klar-, 
daß von der Funktion » (x), deren Werth '

„ m*  x ,
A Cos, ------f B sin.

a
mr x

a
nicht auf alle Fälle, der vorgegebenen Frage passend 
ist, und weniger genetisch sey, als er seyn sollte.

Wenn jemand einwenden wollte; die Größe

azzz x 3 f ß/" x 3 t ?c.
könne auf die Form

» t £ Cof. 2x f 7 Cof. 4X t rc.'
gebracht werden, weil

x=Sin.xta Sin.: x’fb Sin. r x’f 2C.= Sin.: x(lfa Sin.: xw 
t b Sin.; x4f rc.) = Sin. x(aztbz Cos.2x|cz Cos. 4xf rc.) 

also

x= = Lz.£°£- <a" bz/Cof.2x f cz/cof.4x t rc.); 
und endlich 2

x’ =, a/// b/// Co£ 2x f ezzz Cos. 4X t rc.
, so 
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so würde er aus dem Grunde, eine falsche Einwen­
dung machen, weil aus der Gleichung:

x3 = azzz f b/zz Cos. 2x f czzz Cof. 4.x f 2C. 
wenn selbige differentiirt, und durch dx dividirt wird, 

eine andere:

-2—. =5 — 2bzz/ Sin. 2x — 4czzz Sin. 4X — rc. 
3^

entstehet, welche nach der Hypothese x = o, die un­
gereimteste Gleichheit » = 0 hervorbringt. Ueber- 
dieß wenn folgender Gegensatz gemacht würde, daß 
auch der Sinus x, in

/ts Cof. 2x f h Cof. 4X f rc. 
verwandelt werden könne, so würde es nehmlich er­

laubt seyn, festzusetzen, daß

Sin.:X=V*Sin.x 3=V* ("^2^) Oof.2xf

h cof, 4^x f rc., 
aber diese Gleichung hat, einen stoppelten Fehler,

I. Weil 
d.Sin. :x

dx
= 1 wenn x es o.

and im Gegentheil
d(/tg cof.axfhcof.4xtic.)_f wenn x 

dx

II. Weil y --- Sin. x eine Curve bezeichnet, I'die 
aus entgegengesetzten Aeften gebildet -ist, d.e sowohl 
ober- als unterhalb der Axe, befindlich sind; wogegen 

y es f f g Cof. 2X f h Cof. 4.x f rc.
eine Curve andeutet, deren Aefte den Abscissen,x und

---  X
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— x entsprechen, welche auf demselben Theil der 
Axe liegen.

Anm. zum 69. §. Theil II.
Die meisten Anwendungen des Taylorschen Lehr­

satzes, auf die Evolution der Funktionen, jeder ver­
änderlichen Größe, wie unser Autor gezeigt hat, ge­
hen bloß auf diejenigen Falle, in denen die verän­
derliche Größe selbst, eine gewisse Zu- und Abnahme 
erhält; er erwägt aber keines Weges, die Evolution, 
in der die veränderliche Größe, unverändert bleibe, 
obgleich die Taylorsche Formel, auch itn diesen Fäl­
len, eine außerordentliche Hülfe leistet. Zu mehrerer 
Erweiterung dieser bewundernswürdigen Formel wird 
es glaube ich, nicht überflüssig seyn, dieß hier kürz­
lich anzuführen. Es sey also z eine Funktion des Bi- 

nomiums x f w, und y eine ähnliche Funktion vonx, 
d.i. z=^(xt») und y § (x); so wird 

(A) 2.2dx3
w*d*y

2.3.4dx4
t rc.

seyn welche jederzeit, eine wahre Gleichung seyn 
wird, man mag eine Größe, welche man immer 
will, für • annehmen, und die veränderliche x mag 
seyn, welche es wolle. Folglich bestehet die Glei­
chung (A) auch alsdann, wenn sie in allen ihren gcs 
gebenen Gliedern x und *,  x =0, und sodann 
• = x gesetzt worden. Wenn daher Hie Werthe, in 
welche die Glieder übergehen,

dy ddy d’y d*y
7' cU ' d? ' dx*  ' dx*  1C#

durch 
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seyn.

2.z 2.3.4

durch die Substitution x s o, kz a, b, c, d re. ge- 
nennet werden, so erhalten wir die Formel:

zos x Bxe , Cx5 , Dx4
(ß) ^(x)=;KtAxt----  f----f---------f 2C.

2 2. 2 2.3.4

Zweytes Beyspiel.

Es soll der Sinus x, durch die Reih« bet' Poren- 
zen des Bogens x, gesucht werden.

Es wird folglich
, , Bx® . Cx? . Dx4 . »Sm.: x = k t Ax f — f — f-------- f re. seyn;

2 2.3 2.3.4

I,B s O,C s= — 1 ,D = o, E = 1 2C,

Erstes Beyspiel.

Es sey die Exponenzialgröße ax zu evolviren, vor­
gegeben.

Nimmt man x --- 0, so findet man:
K= 1, C =la,B = (Ia)2 , C = (Ia)3, D = (la)4,2C.

Deswegen wird nach gehörigen Substitutionen, in 
der Gleichung

x x’CIa)’ x4(la)*  ,
(B) axca 1 f xlaf-------- - 1-----------T-----------t re.

2 2.3 2.3.4

Anm.
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Anm. nach §. 151. Theil II. *)
In den reciproken Petenzenreihen natürlicher 

Zahlen, die überhaupt dargeftellt werden, durch

bis ins unendliche wird man es in der That, sonder­
bar finden, daß die Summe aller Glieder in 
ungeraden Stellen, sich verhält zur Sum­
me der Glieder in .geraden Stellen, wie 
2-" — 1 zu 1. Dividier man nehmlich die Reihe 
(A) durch 2®, so entstehet diese

welche die Glieder der Reihe (a) in geraden Stellen 
fA)

enthält. Es ist aber — = (B), und folgendes

nehmlich die Summe der Glieder in ungeraden Stel­
len, hat eben dasselbe Verhältniß, zur Summe der 
Glieder in geraden, wie 2« — i zu 1 hat. 
Nimmt man daher den Exponenten m = 1, so fin­
det man die reciproke Reihe der ungeraden, gleich 
jener der geraden und zwar

H i t f O t :c.;==Xt I O t I t rc.;

nimmt

*1 In der deutschen UebersetzUttg ficht §. 132. statt L. I?r. 



HO Anm. zu Eulers Differenzialrechnung.

nimmt man m --- g, so bekommt man
T 1" T? 1*  "t" "7^9 ’s

T i*  "Ä i*  äTT T Txä t TöOT i*  iC» — 7 * T> 
und überhaupt in Reihen, welche aus reciproken Po­
tenzen, natürlichen Zahlen entstehen, übersteigt die 
Summe der Glieder, in ungeraden Stellen, um so 
vielmal die Summe jener in geraden Stellen, als um » 

so vielmal die gleichnahmige Potenz von zweyen, um 
die Einheit vermindert, die Einheit übertrift.

Allein hier gerathen wir, auf einen unerwarte­
ten, und ganz besondern paradoxen Satz, daß nem- 
lich, so oft der Exponent der Potenz, nicht um die 
Einheit größer ist, die Summe der Glieder in unge­
raden Stellen, dem bewiesenen Lehrsatz zufolge, klei­

ner seyn müsse, als die Summe der Glieder in ge­
raden Stellen, da doch hingegen, die Glieder der 
ungeraden, mit jenen der geraden Stellen, einzeln 
verglichen, jederzeit größer gefunden werden, und 
zwar nach vorhergehender Analogie:

ist das Verhältniß der kleinern Ungleichheit, 
oder ein Verhältniß des Kleinern zum Größer» , so 
oft der Exponent m, um die Einheit kleiner ist; hin­
gegen ist das andere Verhältniß
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ein Verhältniß der größern Ungleichheit, oder 
ein Verhältniß des Größern zum Kleinern, weil jedes 
Glied, im vorhergehenden offenbar jedes Glied, das 
demselben im Nachfolgenden entspricht, übertrift.

Dies Paradoxon nun, hebt selbst der scharfsinni­
ge Jakob Bernoulli nicht, welcher in der Abhandlung von 
den unendlichen Reihen §. XXIV. folgendes sagt: 
„Es ist bewundernswürdig, daß in der Reihe

<i f <2 t <3 * <4 f rc.

»deren Summe unendlich, oder größer ist, als die 
„Reihe

„der kleinern Nenner wegen, die Glieder der unge­
laden Stellen, zu den Gliedern der geraden, der 
„Regel nach ein Verhältniß wie Va — i zu r 
„d. i. des Kleinern zum Größern haben, wogegen je- 
„ne mit diese einzeln verglichen, dennoch größer sind, 
„deren entgegengesetztscheinende Verhält­

niß , ob sie gleich aus der Natur des Unendlichen, 
„mit endlichem Verstände, nicht faßlich zu seyn scheint, 
„dennoch von uns deutlich eingesehen worden. Ein 
„gleiches ist auch von andern, ähnlichen Reihen zu 
„verstehen, die eine unendliche Summe haben." Da 
aber Bernouilli, die wahre und. verständliche Erläute­
rung, dieses paradoxen Satzes, niemals öffentlich be­
kannt gemacht hat, auch dieselbe vergeblich, in der 
Sammlung seiner Werke gesucht wird; so glaube ich, 
haß es nicht undienlich seyn wird, selbige hiermit zu 

erörtern. Wenn also in der Reihe
(A)
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i i . i i i i i.i
(A) jm 2m gin 4UI A Hm win gm

alle Glieder durch 2ln dividirt werden, so daß daraus 
die andere Reihe entsteht nehmlich:

1 1 , 1 , 1 , 1 . _i_ . 1
) 2m ~ 4m ~ 6In * 8m 1 XOU1 1 I2U) 1 14m

t t rc. 
i6m

so ist es sicher, daß die Glieder dieser Reihe (A), in 
geraden Stellen, gefunden werden, so wie ebenfalls, 
die Glieder der dritten Reihe*)  ,

1 . 1,1, 1,1,1
x ' jm 1 gin ‘ gm * 7U1 1 cpn ijm * 

in ungraden Stellen; demohngeachtet übertrift die 
Zahl der Glieder, in der Reihe (B), zweymahl die 
Zahl der Glieder der Reihe (C), weil die einzelnen 
Glieder der Reihe (B), aus den einzelnen in (A), 
Lurch 2m dividirt erfolgen, da hingegen die einzel­
nen Glieder der Reihe (C), bloß den abwechselnden 
Gliedern der erftern (A) entsprechen, deren Zahl 
zum wenigsten, die Hälfte der Zahl der Glieder in 
(A) und daher auch die Hälfte jener in (B) ist. 

Hieraus folgt, daß in der gegenseitigen Vergleichung 
der Reihen (C) und (B), nicht einzelne Glieder, mit 
einzelnen zu vergleichen sind; sondern daß nach ge­
schehener Vergleichung des iteu Gliedes, mit dem 
ersten Gliede, jedes Glied der Reihe (c) allezeit zu­
gleich mit zweyen der Reihe (B) verglichen werden 
müsse; so wird alsdann nach der Hypothese m < i 
erhalten, daß jedes Glied der Reihe (c) kleiner sey, 

als
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als das Aggregat Zweyer in (ß) sich entsprechender. 

Es sey nehmlich —, ein beliebiges Glied der Reihe 

(C), so werden zwey mit demselben übereinstimmende

in (B) --------- -—, und—seyn, und das Ver-
(2 a — 2)m (2 a)'»

haltniß zum Aggregat derselben, ist

Multiplicirt man ferner, das Vorangehende, 
und Nachfolgende Glied der Verhältniß, durch 

(23)w; so entstehet die Analogie:

augenscheinlich ein Verhältniß des Kleinern, zum 
Größern ist; denn wegen m < i, wird 2m < 2,

I f f------------) > 2 > 2",
* k a — rz\a —I

Also werden die einzelnen Glieder der Reihe (c) 
(ausgenommen das erste) zugleich mit zweyen der 
Neihe (B) verglichen, stets kleiner seyn, so oft nehm­
lich der Exponent m, kleiner als die Einheit ist; 
t^lglich ist hje Reihe (C). kleiner als jene (B), wie 
frcren wechselseitige Proportion 2«1 — 1 ; darthut.

Hm-
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Hingegen in der harmonischen Reihe:

ist dieß bemerkungswerth, daß wenn nehmlich die 
Glieder ungerader Stellen (ausgenommen das erste) 
immer von zweyen einander entsprechenden, und zu­
gleich vereinigten Gliedern gerader Stellen, wegge­
nommen werden, daraus eine neue Reihe entspringt, 
welche eine endliche Summe hat, die sie zwar in 
andern Reihen« wo eben dies Paradoxon sich ereignet, 
nicht erhalt, indem in denselben, die Summe der Reihe, 
die auf besagte Art erzeuget wird, unendlich ist. Wird 
in der harmonischen Reihe, von dem Aggregat zweyer 
Glieder H weggenommen f, so entstehet

desgleichen
i

4 . io
i J. T __
T 1 S3

bis ins Undendliche deren Summe endlich ist, weil 

sie die Halste dieser

2.3 4-5 * 6.7 8'9 -o.-l ‘ K'

weit kleinern, als jener andern

deren
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deren Summe endlich, obschon klein ist. Hieraus ist 
begreiflich, warum in der harmonischen Reihe, die 
Summe der Glieder in ungeragen Stellen, nicht klei­
ner sey, als jene in geraden, obgleich jedes Glied 
ungerader Stellen (ausgenommen das erste) kleiner 
ist, als iwey zugleich genommen entsprechende, von 
geraden Stellen, welches daher kommt, daß die er- 
stern Summe, bloß um eine endliche Größe, in An­
sehung der andern fehlt, ohnerachtet die Summe bey­
der, unendlich ist.

Auf nicht unähnliche Weise, wird auch der
Grund eines andern Paradoxums angegeben, daß 
nehmlich in der Reihe natürlicher, zu irgend einer
Potenz erhobener Zahlen,

jm «j. 2in 3m *i*  4m 5m f 6U1 f 2C.
bis ins Unendliche die Summe der Glieder in gera­
den Stellen, zur Summe aller Glieder der Reihe, 
ein Verhältniß haben, wie 2™ zur doppelten Einheit,
in der Reihe natürlicher Zahlen; zur vierfachen, 
in der Reihe der Quadrate; zur achtfachen, in der
Reihe der Würfel hat rc., obschon die Glieder in 
geraden Stellen, als Theile der ganzen Reihe, deren 
vielfache Größe, auf keine Weise auszumachen schei­
nen. Es würde daher äußerst falsch und ungereimt 
seyn, wenn man in dem Wahn stände, daß die Reihe 
der Quadrate, der Würfel und anderer höhern Po- 
kenzen, aus den natürlichen Zahlen, kleiner seyn 
müsse, als die Reihe der natürlichen Zahlen selbst, 
in welcher sie gleichsam, als Theile vom Ganzen ent­
halten würden.

H 2 Anm.
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Anm. zum 159. II. Theils.
■ AU$ der vortreflichen Gleichung unseres Autors, 

httot3 ■ ■ ■ tlx=-!lh-rt(.xtä)lx-xt 7^ - ^7. t

-------t >c.7-8x7 
fiießen einige Lehrsätze, die ihres ganz besondern Nu- 
stens wegen, sich empfehlen, und hier bewiesen zn 

werden verdienen.

Erster Lehrsatz.

Man nehme x für unendlich groß an, 

und e für die Basis der hyperbolischen Lo­
garithmen. So ist

X t I rX v 2»
1.2.3.4*  ♦x == ------- .

1 e
Die Eulersche vorbenannte Gleichung, wenn x = 00 
angenommen wird, und — x = — lex ist, geht in 
diese über:

(A) 11 f 12 t I3 .... f lx = $12ar f (x*f|)  lx — lex. 
Ist dieser Uebergang von Logarithmen, auf Zahlen 
erfolgt, so wird diese Gleichung ungestaltet in

r . 2 . 3.4.... x = ------ W.

Zweyter Lehrsatz.

Wenn man x und p, als unendlich groß 

an nimmt, so wird:
X
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x(x — I) (x — 2) (x — 3),..Cx —pf2) (x —pti)

Man fubftituive in der Gleichung (Ä) x — p für x, 

so bekommt man
ll t t 13 • ♦ ♦ *.t  l (x — p) = (x—!p f D-1 (X

— lex - p f | 12 r*
Diese Gleichung ziehe man, von der ersten (A) ab, 
so findet man:

lx t 1 Cx •— 1) t 1 (x — 2) .. * t 1 (x — p t 2) f 
1 (x — p f i) = (x t I) lx — (x — p t 1) 

1 (x — p) 's*  le ~ P. 
Man erhalt daher, durch Fortschreitung von Loga­
rithmen auf Zahlen:

x(x — I) (x — 2) . . . (x — p t 2) (x — p t 1)

p

Dritter Lehrsatz.

Nimmt man x und p, für sehr große 
Zahlen an (denn würden sie als unendliche 
genommen, so wäre die Gleichheit absolut) 
so wird der Coeffiz ient des (pfi)ten infinite? 
simimal-Gliedes, welcher im Binomium zur 
Potenz x erhoben worden, mit dem nächsten 
Ausdruck äquirelt,



X

. sx — p ch I)
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X + IX

?p - p/- p

Aus der gemeinen Algebra ist bekannt, daß wenn das 
Binomium zur Potenz x, erhoben wird, der Coeffw 
zient des (p f i)ten infinitesimimal - Gliedes, nichts 
anders sey als:

X^X -T- i) (x — 2^ (x

Allein da nach der Hypothese, x und p unendliche, 
oder auch, sehr große Zahlen sind, so ist der Zahler 
dieses Bruches, vermöge des zweyten Lehrsatzes

x f 5 — p: e

und der Nenner nach den ersten Lehrsatz.
- Pf * Vä-

" eP
Also wird vorbenannter Bruch d. i. der Coeffizient des 
(p ch i)ten infinitesimal - Gliedes im Binomium zur 
Potenz x erhoben, mit der Größe

___________ ___________________  

pP + $(X - p)* X-pt$<«

aquiret, W. Z. E. W.
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Zusatz I. Ware p = nx, so entstünde:

X t I X t i /X ______ X
pP+^x_p)x-PtV«_(nx)nXft x-nx)x-”x'iV=T 

X t |X _
' -nxfj xf~ I x—nxff

n X X (1—n) V 2»1
1

NX x—nx-^ r r
n (1—n) y nx.V 2»1 _~ (^-)°x (I_n)x«7^7

Zusatz ii. Daher wird der Werth, der größ­
ten oder mittlern Coeffizienten, welcher im Binonium, 
zu einer unermeßlichen Potenz x erhoben werden, 
gefunden; gesetzt es sey p = |x oder n = <, und 
subsrituirt man dies, im vorhergehenden Ausdruck, so 

wird jener in diesen verwandelt,
2XV" 2 
V^"x ' 

welcher den Werth des größten Coeffizienten, darstellt.
Zusatz 111. Wenn das Binomium, zu einer un­

endlichen Potenz x erhoben worden, so wird das 
Verhältniß des größten Coeffizienten, mit der Größe

äguirt; denn es ist die Summe aller Coeffi­

zienten = 2*,  mithin das obengenannte Verhältniß:

Anm.
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Anm. zum 185- §*  II. Theils.
i) Es wird vielen der' Beweis unsers Autors, 

verdächtig scheinen, welcher bloß auf dem Grundsätze 
beruhet, den er mit folgenden Worten vocträgt: 
Wenn also * eine unendlich große Zahl ist, 
so fällt diese Unterscheidung (Erwägung) 
weg, weil eine unendlich große Zahl wedsr 
gerade noch ungerade genanntwerden kann, 
und es müssen also dabey diezweifelhaften 
Glieder wegelassen werden. Hieraus folgt, 
daß die Summe von Reihen dieser Art, 
wenn sie ohne Ende fortlaufen, bloß in 
der h i n z u z u f ü g e n d e n b e st a n d i g e n G r ö ße b e- 
ft e h e. Jedermann begreift es, wie unzureichend und 

nachtheilig dieser Satz sey, welcher aus der dunkeln 
und geheimnißvollen Art, der unendlichen Zahl her­
genommen ist. Dieserhalb wird es sich der Mühe 
lohnen, die Eulerschen Formeln, mit einem neuen, 
und unumstößlichen Beweise zu versehen.*)

rr. rc.

I I — 2 t 3 — 4 f 2C. = 4

II I2 - 2- t Z2 — 42 t 2C. C3 0
III I3 - 2’ f 3’ — 4? t rc. '•= —
IV 1“ -24t34 — 4*  f 2C. = 0
V I5 - 23 t 3? — 45 t rc. = ll
VI I6 — 26 t 36 — 4® f 2C. = 0
VII I’ - 27 t 39 — 47 f 2C. = —
VIII I8 - 28 t 3* — 4*  t 2C. = Q
1X I9 - 29 t 3’ — 49 t rc. = ioa4

2)

*) Siehe Greg, Fontana Diflrt. von den Reihen im 
ersten Bande ersten Theils: Memorie di M^tematica 
e Fisica dclla socicta italiana 1784.



Anm. zu Eulers Differenzialrechnung. t2i
2) Folgende zwey Lehrsätze, müssen deshalb vor- 

ausgeschickt werden.

Erster Lehnsatz.

Vermittelst des Bogens x der durch ir­
gend einen Radi'us i, des Creises beschrie­
ben worden, bekommt man die Gleichung 

Cof. x f Cos. 2x f Cos. 3_x f Cos. 4X f rr.
bis ins Unendliche = — 4» Es sey

S — Cos. x f Cos. 2x f Cos. gx f Cos.4x f w.
diese multiplizire man durch Cof. x, so bekommt man:

SCos.x = Cof.x Cof.x t Cos.x C0s.2x C0f.xC0f.3x •f’i
Cos x Cos. 4X 7 2C.

Aus der Trigonometrie ist bekannt daß das Produkt aus 
denen Cosinussen zweyer Winkel, mit der halben Summe 
und der halben Differenz dieser Cosinusse gleich ist. *)  
Wird daher jedes Produkt besagter Gleichung, in 
zwey Glieder aufgelößt, so erfolgt:

*) Es ist nemlich aus der Trigonometrie bekannt daß 
Cof. x Cof. y = 4 (Cof. X t y) t 3 (Cos. x — y). 
Hiernach ist also das erste Glied
Cos. xa — 4 (Cos. 2x t Cof.o) = 4 (Cof. -x 11), 
und so findet sich jedes folgende Glied.

S Cof. x = * (Cof. 2x "j*  1) 4 (Cof. gx f Cos. x)
4 (Cof. 4X f Cos. 2x) f K. = 4 t * Cof. x f ;Cos. 2x 

f Cos. 3X t Cof. 4X t 2C. = 4 — 4 Cof. X t s.
Daher wird

8(1 — Cof. x) 2= 4 Cof. x — 4 , d. i. s = — 4 
seyn. W. Z. E. W.

Zweyter
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und zuletzt

(M)

Zweyter Lehnsatz.

Sin. x
S — -- ------- seyn.

2(1 —Colx) 
W. Z. E. W.

z. Mittelst dieser Prämissen ergiebt sich der Be- 
tveiß der Eulerschen Formeln, von selbst.

J. Man differenziire die Reihe des zweyten Lehn- 
satzes, und dividire selbige durch —- dx, so ent­

stehet hieraus

Daher wird durch die Versetzung
8 3 Cof. x = * Sin. x,

Die unendliche Reihe
S ss Sin. x Sin. 2X "t Sin. ZX Sin. 4x f rc. 

bis ins Unendliche ist gleich diesem Ausdruck:
Sin. x

,, 2(1 — Cof.x
Wird die vorgegebene Reihe in den Cof. x, multipli- 
zirt, so erhält man

S Cof. x s= Sin.x Cof. x f Sin. 2X Cof.x Sin. ZX Cof. X 
•j*  Sin. 4X Cof. x f rc. 

Werden nun zwey Winkel <p, Sgegeben, so wird, wie 
aus der Theorie der Winkelfunktionen bekannt ist,

Sin. <p Cof. 6 == § Sin. (0 f 0) f 4 (p — 6) 

Deshalb findet man, nach geschehener« zerlegung je­

des Gliedes in zwey,
S Cof. x s= | (Sin 2x f o) f 4' (Sin. ZX f Sin. x) f 
§ (Sin. 4x f Sin 2x) f 4 (Sin. Zx -j- Sin. Zx) f 2C. 
es f Sin. x f Sin.,2x f Sin. Zx f Sin. 4x f rc. =

S — 5 Sin. x.
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(M) — Cof.x—2Cos-2x—3 Gos.3x—4 Cof-4x—rc. 
bis ins Unendliche

2 I — Cos. x) 4 Sin. ? x1*

2 (l — Cos. x)'

Nimmt man x für die halbe Peripherie, so 
wird x '
Cos.x =—1, Cos.2x=i, Cof.3x=—1, Cos.4xc=:i,2C, 
und also geht die gefundene Reihe, in die Ite 
über: \
1—21-3—41-5—6-z-rc..W. Z. E. W.

II. Man differenziire die Reihe des ersten Lehrsatzes, 
zweymal, und dividire selbige durch dxe, so fin­
det man:
(N) —Cof.x—22Cof.2x—3® Cos. gx —4® Cos. 4X — 

5° Cos. 5X—rc.
wird daher x, für die halbe Peripherie ge­
nommen, so entsteht die Ilte Reihe:

1 2= t 3a — 49 t 59 — 6a f ;c. ♦ == o
III. Man nehme aus der Gleichung (M), das zweyte 

Differenzial, dividire es durch -- dx3, so giebt 
selbiges die Gleichung;

(0)

*) Es ist nemlich

c(i—Cof.x) 2(1 — Cof.x) ’

Sin. x X _ 2(1—Cofx)dxCos.x
's(i—Cof.x' 4(1 —Cof.x)2

adx Sin.x® dx Cof.x
4(1—CoLx)a 2(1 —Cos. xj

dx(i1*Cof.  x)
O —7--------- -—

— dx
--------- ——

lvird nun hierin mit — dx dividitt, so entstehet
1
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(O) — Cof. x — 27 Cos. 2X — 3 ’ Cos. jx — rc.
— I — 2 Cos. J xz

8 Sin. | x4
die vermittelst vorgedachter Annahme von x, in 
die Ilite Reihe verwandelt wird: ,

IV. Nimmt man auf gleiche Weise, die zweyte Dif­
ferenz der Gleichung (N), und dividirt selbige 
durch — dx2, so entstehet diese

(?) — Cos. X — 24 Cos. 2X   Z4 Cos. ZX   
4*  Cos. 4x ■— 54 Cos. Ax ... rc. --- o, 

welche nach der Hypothese x =a i8o°, in die IVte 
Formel übergeht
i4 — 24 t 3*  — 44 t 54 — 64 f 2C. = o.

V. Die zweymal differenziirtc, und durch —dx2 di- 
vidirte Gleichung (o), giebt:

(Q) — Cos. X — 2S Cos. 2x — Cos. 3x — 
2Sin.-$x3 f iZCos.4x2 42Cos.4x4 

4’Cos.4x:-lC. =------------- 5s1mv-----------
Wird daher wie .gebräuchlich x = i8o° genom­
men, so geht gedachte Gleichung, in die vtc 

Formel über:
i? — 2$ t 3$ ~ 4$ t 5- — 6r....f rc. —

VI. Man nehme die zweyte Differenz der Gleichung
(P), dividire selbige durch — dx2, so erhalt man 

die Gleichung:
— Cof. x — 2° Cof. 2x — 3Ö Cof. 3x —

4° Cof. 4x — je. — O.
Deswegen artet selbige,, durch die Substitution 
der h.alben Peripherie für x in die vite Formel 

aus;
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i6 — 26 t 3C — 45 t — 6e......f rc. --- o.
W. Z. E. W. ' ' .

Auf eben diese Art, können alle Eulerschen Lehr- 
Lehrsatze, der Rei^n ganzer positiver Potenzen, aus 
natürlichen Zahlen, mit abwechselnden Zeichen beste­
hend, bewiesen werden, und man kann überhaupt 
festsetzen, daß die Reihen grader Größen, mit einer 
uneigentlichen genannten Summe, oder vielmehr mit 
einer erzeugenden Größe, versehen sind, welche 
stets dem Nichts gleich ist; dahingegen die Reihen un­
gerader Potenzen, mit einer Summe, oder erzeugen­
den Größe die allezeit von dem Nichts verschieden 
ist, versehen werden müssen.

Eben so können auch andere, den Eulerschen 
ähnlichen Lehrsätzen, von den Reihen der Poten­
zen ungerader Zahlen, die mit abwechselnden Zei­
chen versehen sind, bewiesen werden.

1Ü — 3n ? 511 — 7» f 9n — iin ch rc.
Sowohl in diesen Reihen ungerader, als auch 

in jenen gerader Zahlen, kann man überhaupt fest­
setzen: daß die ungeraden Potenzen aus ei-, 
ne r erzeugend e n Größ e, diedemNichtsgleich 
äst, die geraden hingegen-aus einer be­
stimmten Größe, entspringen.

Anm. zum 2O8» §. II. Thnils.
Durch die Differenzialrechnung, können mit be­

sonderer Kürze, auch auf folgende Art, die Coessi- 
zienten der Formel, welche das allgemeine Glied, 
jeder zurückkehrcnden Reihe ausdrückt, gefunden
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werden. Es sey also, die aus der zurückkehrenden 
Reihe, der Ordnung t,

entstandene Gleichung,

aus welcher, wenn yx = az*  gemacht worden, durch 
die Substitution (nach geschehener Division durch az») 
die Beziehungs - Gleichung hervorgehet

(A) As Bz f Cz9 . . ... f Mz‘ - 1 f z« = o.
Man gedenke sich *,  *,  y, 3*  als Wurzeln dieser 
Gleichung; diese Wurzeln seyen = » in der Zahl n, 
so wird gedachte Gleichung, diese Gestalt annehmen:

(B) (z—*) n(zmtpzm-1tqzm~2* ♦. t/z?= o = P 
wenn m f n = t angenommen worden. Man be- 
stimme

z™ pzin - * t qzm ~ 9 . . ./z2 f gz k — z, 

so wird
(z — 6t)11 Z = P

Es sey ferner:
dz = z'dz, ddz = z" dz, d’ z =s zz"dz rc. 

hieraus bekommt man
dP
— = n (z — »)n ~ 1 Z f (z — *)«  Z'? 
dz

so erfolgt, wenn
n a i , z »

gemacht worden,

Die zweyte Differenziirung giebt:

^7 =Xn — I) (z—*)ti- 3Zf2n(z--»)n-tZ/t(z—»)n zu; 
dz

und
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und wenn n = 2/z = « gesetzt worden, so erhält 
man:

wir:

e=s (*  — >)(« — ») rc. u. s. f. 
2>3d* 3

Es sey B f Cz f Gza....t z1"1 = Q, und

ddP
2d«2

Durch gleiche Art zu schließen wird gefunden, 
d”P

---------------------------— z,
I.2.3....nd* n

wenn z =5 «, und n, irgend eine Zahl der natürli- 
chen Reihe 1, 2, 3, rc. ist. Da nun

Z = (z — £) z — 7) z — J) rc.
und « für z gesetzt worden, so wird

z = (<« — €) 0 7) (*  — rc.
Wenn also in der Gleichung (B), die Wurzel * ein­
zig, oder wenn n = 1 ist, so erhalten wir

~ C*  — y) O — rc.;
d.»

sind aber zwey gleiche Wurzeln », dergeftallt daß 
c so ist

d2p— = (*  — 7) (*  — )) rc.;
2da

sind drey gleiche Wurzeln d. i. « — G = 7, so er­

langen

2) 
wegen

A ’s*  Bz •f’ Cza ... .’s Mzt~I*z t = (z — »)n (zin pzm - * 
t qz01'“4.... t/z2 t t 

desgleichen A = A (— «)», so ergiebt sich, wenn A 
weggenommen, und mit z dividrrt worden

(z --  ee)n Z — Zi (--- «')11
Q --- -— -------——;

ist 
X
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ist aber n = i, und z = * gesetzt worden, so ent­
springt Q = V Aus der Differenziazion aber, wird 
weggelassen
dQ n(z — <)”*IZ + (z — (z — <)” Z (k—«)n
dz z z2 '
und da, wo n ss 2,z c=a « angenommen worden, 
erfolgt

Differenziirt man nun zum dritten, viertenmal rc., 
so wird
< ddQ __

2d«2
gefunden, wenn n = 3, z = «, desgleichen auch 

djQ _ ,
2 . gd»3 '

wenn n e= 4, z = « 'und überhaupt 
d«-*Q ___________ .

i". 2.3 . ... (n— I) dx«-1 ~
wenn n irgend eine Zahl der natürlichen Reihe 2, 
3, 4, rc. ist, die mit der Zahl zwey anfangt. k hin­
gegen, mit dem Produkt aus — °X ~ — 5.rc.
gleich ist müssen mit diesem Produkt, vorbenannte 
Differenzieren gleich werden.

Man bestimme daß
R. =3 c f Dz f Ez3,... f z1 - 3,

so wird weil
A = /< (-*  «)n z B = n (— «)n“ 1 t g (■— «)n 

nach Weglassung des Gliedes a f Bz, aus der Glei­
chung (a) und geschehener Division durch z2,

R — ~~ Z ~ 2 “ * 'k g( ~

seyn;
z
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seyn; also geht in der That, der Ausdruck in der Hypo­
these U---I, Tt=.*,  tn R=?g u6er. Wird das Differen- 
zial genommen u. n = 2i, z. — «gemacht, so findet man

— — g; nimmt man huiwrederum n = 3, 2---« sy

d2R
entdeckt man ——- = §, rc. nach eben der Weise 

und Ordnung, wie vorhin. Es ist aber g, ein Ag-r 
gregat der Produkte, aus den Wurzeln — 
welche Produkte ihre Benennung, von der Zahl 
n — 1 entlehnen, folglich werden mit dem Aggregat 
der Produkte r alle vorbesagte Differenzialien äquirt.

Gleicherweise, wenn
S = E j Cz , . . f a*  ■ 5 

gesetzt wird, so findet man
d« - x S

1 .2*3....  (n— 1) da« - *
d. i. dem Aggregat der Produkte, aus den Wurzeln

— — 7, — rc. Diese Produkte erhalten ihre Be­
nennung, vom Exponenten n — 2. Und so jederzeit 
von den übrigen.

3) Es sey zum Beyspiel, das allgemeine Glied 
der rückkehrenden Reihe

yx = a* x ck b§X ck cyx, 
wo (Anm. nach den Uten Cap.)

— , b  ^yo — («T7Vrtyg,
(*  ~ — 7) ’ — ») (g — y) ’

«k/o — (« * g) yT t y9'
(7 — (7 — g)

Weil aber Nach dieser Hypothese, drey ungleiche 
Wurzeln «, g, 7/ herauskommen, so wird
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— o ; Q = ey;R=—C —y 

seyn. Deshalb giebt

Q/o + Ryt + y..
dP
d*

welcher Werth in b übergeht, indem » in C und C 
in » verwandelt wird. Eben so gehet er auch in c 
über, indem » mit y, und y mit * vertauschet wird.

4) Man gedenke sich jetzt, nach angeführtem 
Beyspiel, als wenn die beyden gleichen Wurzeln 
* — C, wären, so nimmt nach dieser Hypothese, das 
allgemeine Glied, diese Form an a'»x -j. b'«x- * c?x, 
wo (im ange. Ort §. 16.)

, —y-AmyAü''2—2*y)y o ,, y.—OfoOyxt«yy0a — ---------- —--------  , b — —— '
(*  — y)

y2 — 2» yr — ««yo

Den Werth von a', bringe man auf diese Form zurück

die von der vorhergehenden, wie hieraus erhellet, 
nicht verschieden ist.

Vermöge der Hypothese, nach welcher n = 2,
wird

wegen k = — y gefunden. Macht man gleichfalls 

n = 2, so ergiebt sich:

R Ng = — y —-

weil



folglich

ddP
2d»2

(- y)9

(*  — 7)

(7 — *) a
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weil k = — 7, g = 1. Daher ist
,, Qyo t Ryr t y*
bz = ----------------------

und hinwiederum
— 7/2 t (« f 7) y« — *vy 0 — bz

« — y
t»'
ddP

fld »e

dQ
yy° f y*
« — r

ddP
2d»8

dQ dR 
y» t ~ y, —. d<e d» 

III. az =------------------------------- .
ddP 

2dl7
5) Wenn drey gleiche Wurzeln vorhanden, und 

jm allgemeinen Gliede der Reihe c",b", a", unbe­
stimmte Coeffizienten, gleichen Wurzeln vorgesetzt sind 
(welche von den übrigen Wurzeln, auch immer unr 

I 2 gleiche

,'dR
A y» tr-yd d * dot

~ddP *

2d«’

dQ dR
h,__ — vyofyrj.— y3K<t7)yii—tf7y0 , d «y° ci7y,~"t3' 

" « — 7 (« — y)2 ddP
sdF

Dieserwegen werden die Werthe, der unbestimmten 
Coeffizienten, folgendermaaßen ausgedrückt:

__ y2 — 2-y. + -°«y°. tT k/__ Qyo t Ry, fy2 1. C = — -7------- —-------- 7 11. D -------
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gleiche seyn mögen) so erhalten wir jederzeit, nach 
tzhen dieser Art zu schließen, folgende Formeln:

, „ Qyo t Ryz t sy*  t Ty rc..
L ----------------------- d3P

2 . 3de6$
Hieraus kann man auf das deutlichste, den Fortgang 
auf andere Falle folgern, wo vier, fünf, sechs rc. 
gleiche Wurzeln, vorhanden sind.

Aum. ZUM XI. Capitel II.'Theils.,^)
i. Eine Funktion irgend einer veränderlichen Grö­

ße, wird dann allezeit ein Größtes oder Kleinstes 
-wenn die verschwindenden Differenzial-'en der Funk­
tion, auf einander folgender Ordnungen, von ungera­
der Zahl sind; ein Größtes hingegen so oft deren 
übrig bleibendes Differenzial, nach dem zuletzt verschwin­
denden, negativ ist; ein Kleinstes aber, wenn es po­
sitiv ist. Dies wird sowohl von unserem Autor, als 
von andern, hin und wieder bewiesen.

2) Nach Erwägung dessen, sey Z eine algebrai­
sche Funktion, der veränderlichen Größen t, u, x, y, rc. 
deren größte und kleinste Werthe, erforscht wer­

den

Nach der deutschen yehersetzrrnz zte? Theil. 
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den müssen; aus dem Bewiesenen also ist 
dZ — pdt f qdu f rdx f sdy f rc, 

woraus alsdann diese Gliechung fiießt:
pdt f qdu f rdx f sdy f 2C. = O.

Da ferner die Beziehung, zwischen den veränderlichen 

Größen t, u, x rc. so wie auch unter ihren Differen- 
zialien dt, du, dx rc noch unbestimmt ist, ihre Bezie­
hung mag seyn welche sie wolle, so folgt augenschein­
lich, wenn vorbesagte Gleichung, statt haben soll, 
daß die einzelnen Glieder pdt, qdu, rdx rc. gleich 
Null gesetzt 'werden müssen. Hieraus entstehen nun, 
so viele Gleichungen, als veränderliche Größen vor­

handen sind, nehmlich:
1. p = o; 11. q = o; III. r =0; rc.

Durch Hülfe dieser Gleichungen, werden die Wer­
the der unbekannten Größen t, u, -e, rc. gefun­
den, die wenn sie in der Funktion z, an deren 
Stelle gesetzt werden, dieselbe entweder zum Größ­
ten oder Kleinsten! machen.

3) Nun wollen wir zum zweiten Differenzial 
schreiten. Wenn, wie es erlaubt ist, als erste bestän­
dige Differenzialien dt, du, dy rc. -angenommen wer­
den, so erfolgt:

d3Z = dpdt f dqdu. ch dydx f dsdy f rc^
Es sey:

dp = Adt B du f Ddx ch Gdy
dq = Bdt ch Cdu ch Edx ch Hdy
dr sä Ddt f Edu f Fdx ch Jdy
ds Gdt f Hdu f Jdx f Ldy,

Daraus wird nun gefunden:
d'Z --- Adt11 sBdtdu t Cdu312Ddtdx f sEdudx f Fdx*  f 

2Ddtdy tsHdudy f 2jdxdy f Ldy\

Da-
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Damit wir aber, unter allen vom einfachsten Fall 
anfangen, so wollen wir annehmen, daß eine der 
veränderlichen Größen, t sey, und also d2z = Adt2, 
wobey wegen des allezeit bejahenden Werthes dt’, 
das Differenzial d8Z, stets mit demselben Zeichen, 
versehen seyn muß, womit die Größe a begabt ist; 
deshalb wird Z, die kleinste seyn, wenn A positiv; 
die größeste aber, wenn A negativ ist. Wenn nun 
A = o gefunden worden, so kann von den darauf 
folgenden Differenzialien von z, das Kennzeichen des 
Maximum und Minimum, hergeholet werden.

4 Gesetzt nun, es waren in der Funktion Z, 
zwey veränderliche Größen t und u enthalten; so er­
folgt nach dieser Hypothese:

däZ = Adt= t 2ßdtdu, f Ddu2 --- A(dt f

B*  
t (C - -)due.

Da in dieser Gleichung die Quadrate 

und du8 stets positiv sind, so muß das zweyte Diffe­
renzial d2z, nothwendig positiv seyn, so oft nehmlich 

B2
je zwey Coeffizienten A und c — be-ahend wa­

ren; negativ hingegen ist es, wenn dieselben beyde 
verneinend sind, die wechselseitige Beziehung der Dif­
ferenzialien dt, und du mag seyn, welche sie wolle. 
Daher wird für den kleinsten Werth der Funktion 

Z, gehalten werden
B8

A > o, C o,

nehm-
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nehmlich
c > -, oder ca > B-,

A
weshalb c > o. Die vorgegebene Funktion Z, kann 
dieserwegen, nicht die kleinste, als nur unter fol­

genden drey Bedingungen seyn;
I. A > o; II. C> o;. III. AC > B*  

Auf eben diese Art zu schließen, finden wir, daß der 
größte Werth von z, sey

B2 b*
A < o; c — — < o, oder C < —-;

A A
desgleichen CA > B*,  weil A negativ, also auch 
C < 0; deshalb kann die Funktion Z, nicht das 
Maximum erlangen, als unter diesen drey Bedin­
gungen ;

I, A < o; II. c < 0; III. CA > B1. 
Hieraus erhellet ferner, daß die Bedingungen des 
Maximums, theils übereintreffen, theils den Bedin­
gungen des Minimum, entgegen sind.

5) Wenn entweder a, oder c, oder beyde zugleich 
= o find, oder auch B = o, so kann die vorherge­
hende Bedingung ac > Ba, kernesweges statt haben, 
folglich erlangt die vorgegebene Größe, niemahls den 
Werth des Maximum oder Minimum. Eben 
dieses wird sich ereignen, wenn A und C, entgegen­
gesetzte Zeichen haben sollten, weil alsdann wegen des 
allezeit positiven Werthes B2 die Bedingung AC >B2 
unmöglich wird. Wenn aber B, zugleich mit A oder 
c verschwindet, so hangt der Werth des zweyten 
Differenzials daZ, blos allein von der veränderlichen 
Größe ab, welcher diesem zufolge, entweder Maxi- 

m u s,
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mus, oder Mini mus oder keines von beyden, wäre, 
und zwar nach denen, vom Autor angegebenen Senji# 
Zeichen, für die Funktionen einer veränderlichen 
Größe. Wenn endlich die ganze Größe d2Z --- o, 
nehmlich A=:o,B=o,c = o, so muß man zum 
dritten Differenzial d3Z, seine Zuflucht nehmen; ver­
schwindet dieses nicht, so kann die Funktion Z, weder 
ein Größtes noch ein Kleinstes seyn; sollte es aber 
verschwinden, so muß man das vierte Differenzial d4Z, 
suchen, wo man alsdann, nach der hier dargestellten 
Methode, leicht erkennen wird, ob der Werth dessel­
ben positiv, oder negativ sey, und hieraus wird sich 
hinwiederum, der größte oder kleinste Werth, der 
vorgegebenen Funktion, ergeben.

6) Ist z eine Funktion, von drey veränderlichen 
Größen t, u, x, so nimmt das Differenzial d2z, diese 
Form an:

d2Z =r Adt2 f 2ßdtdu f Cdu2 f aDdtdx ch 2Edudx f Fdxa

Da aber wegen des Werthes der Quadrate-
(-lt
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/> B du Ddx x2- ' r. , b dx \ »
f dt f — f - J , (^duf —J , und dx*

Welcher stets positiv ist, so wird auch das Differenzial 
daz, gleichfalls positiv seyn, wenn die Coeffizienten 

b?
A, a, itnb c -—, mit dem Zeichen f versehen wor­

den , folglich finden für den kleinsten Werth der 
Funktion z, folgende Bedingung statt

A > o ; a > o ; ca > ba,
oder wenn deren Werthe, a, b, c dafür in die Stell» 
gesetzt werden: 
. B3 z B3>\z

nehmlich
A >O; CA>Ba und (cA — B^CFA—Da)>(EA — BD)=; 

woraus abermals
c > 0 , F > o, unb FA > Da

entstehet. Deshalb wird das Minimum der Funk­
tion Z, unter folgenden fünf Bedingungen, bestimmt 
werden:

I. A>o; II. C>o; III. F>o; IV. CA>Ba; V. FA>D\
Gleicherweise wird der größte Werth von Z, 

unter diesen Bedingungen gefunden werden:
A<o, CA>Ba, und (CA—Ba) (FA—D2)>(EA—BD)=; 

denn 1. muß a < o seyn, nehmlich!

c  L < oder C
A A

es ist aber A negativ, folglich
ba b® ’

ca>b\ II. ist C-------<0; d.li. c < —;
a a !

weshalb, weil a negativ ca > ba, d. t\

(C -
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(CA — B1) (FA — D‘) > (EA — BD)e 
woraus fa > D2, und F < o entsteht. Es sind da­
her die Bedingungen des Maximum folgende:

I.A<o;  II.C <o; III.F <o; IV.CA>B2; V,FA> De.
7. Wenn die Größen A oder c einzeln, oder bey­

de verschwinden, so wird die ivte Bedingung unmög­
lich. Verschwindet F, so fallt die Vte Bedingung weg. 
Hieraus folgt, daß die Funktion Z, weder Maxi- 
ma, noch Minima seyn könne, wenn die Größen 
A, c, F sowohl einzeln, als alle verschwinden.

Aus dem Gesagten erhellet deutlich, daß die 
Theorie auf vier Funktionen, oder auch auf mehrere 
veränderliche Größen, anzuwenden sey.

8. 'Da diese neue Theorie, von Eulern nicht be­
rühret worden ist, so wird es nicht unnütz seyn, fol­
gendes zu bemerken,

Von welcher Zahl auch, die veränderlichen Grö­
ßen seyn mögen, welche tn die angegebene Funktion 
Z eintreten, wenn jede derselben, für sich betrachtet, 
und das Maximum oder Minimum gesucht wird, 
welcher derselben zukommt, während die übrigen stets 
dieselben bleiben, so werden einzeln, die ersten Diffe- 
renzialien pdt, qdu, rdx, sdy 2C. gefunden werden, 
deren jedes gleich Null gesetzt die §. 2. dargestell­
ten Gleichungen, liefern wird, nehmlich

p s= O, q = O, v = O, S = o 2C. 
Auf eben diese Art werden die für sich, bis auf die 
zweyten Differenzialien, fortgehenden Größen

Adt2, Cdu2, Fdx2, Ldy2 je.
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gefunden , wobey , wenn a, c, f, l 2c, entweder 
sämmtlich positiv, oder negativ tvar-ett, jeder leicht 
ein sehen wird, daß die Werthe derselben t, u, x rc., 

die aus den Gleichungen p = o, q = o, 2c. heraus­
geworfen worden, nothwendig der vorgegebenen 
Funktion z, entweder der grjößte oder kleinste 
Werth, beylegen werden. Und so ist in der That 
ausgemacht, daß diese Funktion Z, wenn sie nur das 
Verhältniß, einer der vorgedachten veränderlichen 
Größen hat, entweder Maxima oder Minima 
seyn müsse. Allein wird wohl jemand mit Sicherheit, 
das Urtheil fallen können: daß dasjenige, was für 
irgend eine veränderliche Grösse, für sich betrachtet/ 
behauptet werden könne, für alle zugleich genommen, 
gelten müsse. Dies wollen wir aufs genaueste un­
tersuchen.

9. Es sey also Z, die Funktion zweyer veränder­
lichen Größen t und u, die zugleich die Ordinate sind, 

so daß die Coordinate dieser Fl äche, drey veränder­
liche Größen z, t, und u, derselben. Die Frage wird 
also darauf ankommen, daß man die größte Ordi­
nate der Flache, finden müsse, deren Gleichung 
dz = pdt f qdu sey. Wenn u zu einer beständigen 
Größe gemacht wird, so geht die Gleichung in 
dz = pdt über, und sie drückt alsdann, alle mit der 
Axe dieser Flache, parallel gehenden Schnitte, der 
Größe t aus, je nachdem die Größe u, verschiedene 
Werthe annimmt. Man setze p = o, und nehme aus 
dieser Gleichung, den Werth der Größe t, welcher 
in jeglichen Parallelschnitten, die Ordinate Z cntwe- 
der wieder Maximam oder Minimum machen 

wird.
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wird. Weil nun u als beständig angenommen wird, 
so ist das zweyte Differenzial d2z = Adt2, folglich 
kann man billig, aus dem bloßen Werth von A, auf 
die existenz des Maximum oder Minimum schlie­
ßen, wofern nur der begehrte Werth t, aus der Glei­
chung p = o, substitulrt wird. Wenn also für jeden 
Werth von u, die Größe a entweder negativ, oder 
positiv gefunden wird, so bekommen alle vorgedachte 
Schnitte, entweder Maximum oder Minimum, 
und wenn!für den verschiedentlichen Werth von u, 
die Größe A mit verschiedenen Zeichen, versehen wird, 
so erhalten diese Schnitte, unter gewissen festgesetzten 
Einschränkungen, das Max im um oder Minimum. 
Ware A = o, es sey der Werth der beständigen 

Größe, welcher er wolle, dann wird keiner jener 
Schnitte, weder das Maximum oder Minimum 
haben. Ist hingegen a allein = o, wenn u bestimmte 
Werthe hat, dann werden diese Schnitte, welche 
vorgedachten Werthem von u entsprechen, sowohl das 
Maximum als Minimum, nach dieser Hypothese, 
beraubt. Der geometrische Ort, aller dieser Ordinä­
ren, ist in der Gleichung p = o, tn bloßer Erwä­
gung der Veränderlichkeit von u, enthalten; daher 
bilden die Ordinate« in dieser Fläche, einen Schnitt, 
der entweder von einfacher, oder doppelter Krümmung 
ist, und der durch je zwey verbundene Gleichung,

dZ = pdtfqdu und p = o oder dZ = qdu und p=o, 
bestimmt werden wird. Woraus es deutlich ist, daß 
man bey Erfindung des Maximum oder Mini­
mum, der ganzen Flache, die größte oder klein­
ste Ordinate, die diesem Schnitt gemäß ist, suchen 
mäße; dadurch bekommt man wiederum q = o, wel­

che 
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che Gleichung, den Werth der andern veränderlichen 
Größe u, darbieten wird.

10. Nun wollen wir, zum Differenziül von g, 
nehmlich zur vorhin gefundenen Gleichung dq = Bdt 
f cdu, übergehen. Da also aus der Gleichung p—0, 
r durch u bestimmt wird, oder im Differenzial dieser 

, , Bdu
Gleichung Adt Bdu = o also dt =------ — wenn

man diesen Werth in der vorhergehenden Glei­

chung subftituirt, so ist; dq = (— ~ f c) du 

woraus sich ergiebt, daß die Ordinate Minima seyn 

werde, wenn die Größe --tc positiv, b. i.C> — 

B2
war; Maxima hingegen, wenn C < - i)t, end­

lich aber weder Maxima noch Minima, wenn 

C c= in sofern die übrigen höhern Diffcrenzia- 

lien, unter den oben angezeigten Bedingungen, be­
hauptet werden. Wenn wir nun solchergestalt, das 
Maximum und Minimum reiflich erwägen, so 
werden wir finden, daß die Ordinate Z, unter allen 
übrigen, nicht ein Gröstes-seyn könne, die in der 
Durchschneidung, vermöge der Gleichung dZ qdu 
enthalten, wofern nicht alle Ordinären, die diesen 
Schnitt ausmachen, eben so viele Maxima, in Homo--? 
loge« Parallelschnitten sind. Aus gleichem Schluße, 
kann auch die Größe Z, nicht Minima seyn, wofern 
sie nicht gleichfalls Minima, in dem Schnitte ist, 
der alle Minima umfaßt. Hieraus kann man fer­
ner schließen, daß die Werthe von t und u, welche 

aus
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aus den Gleichungen p == o, q = o hergeleitet, 

B2
und die in den Großen A, und c--------subftituiret

A
worden, den größten Werth der Ordinate z, anneh­

men, wo A negativ und c < d. i. ca > b2 

war, so wie hingegen die Ordinären Z, durch jene 
Substitution, den kleinsten Werth bekommen, wenn 

B2
A bejahend, und c > —, oder ca > ßa ist; 

welches alles mit der oben erklärten, allgemeinen 
Theorie, übereinftimmt.

11. Die vorerwähnten Bedingungen finden statt, 
wenn u zuerst als beständig betrachtet wird, t aber 

als veränderlich; geschiehet aber das Gegentheil, und 
man nimmt u als veränderlich, t hingegen als be­
ständig an, so ereignen sich folgende Bedingungen: 
C < o und AC > B2, fürs Maximum: c > ound 
AC > B2 fürs Minimum; welches in der That lauf eins 
hinausläuft. Uebrigens wird diese andere Methode, 
die Bedingungen derer Maximum und Minimum, 
bey Erfindung der Funktionen, zweyer veränderlicher 
Größen, gleichfalls auf andere, mehr komplexe 
Funktionen, angewendet. Diese Methode ist mehr 
direkt, und analytisch, als die erstere, weshalb wir 
dieselbe, hier überhaupt entwickeln wollen.

12. Gesetzt es wären in der Funktion Z, so viele 
veränderliche Größen enthalten, als man deren wolle, 
die übrigen hingegen, würden als beständige betrach­
tet, so erwäge ich eine derselben, bloß als veränder­
liche Größe, und leite aus der Differenziation, die 
Gleichung für das Maximum oder Minimum ab.

wird
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wird nun nach dieser Hypothese, das zweyte Diffe- 
renzial genommen, so können die Bedingungen be­
stimmt werden, welche der Funktion z, entweder der 
größten, oder kleinsten Werth, oder keinen 
von beyden, beylegen. Vermöge dieser ersten, abso­
luten Operation, subftituire man in der Funktion z, 
oder deren Differenzialien, den gefundenen Werth, 
der ersten veränderlichen Größe. Eben so stelle man 
auch, die Rechnung bey der andern, veränderlichen 
Größe an , und substituire deren hervorgebrachten 
Werth, in der Funktion Z; endlich gehe man zur 
Untersuchung, der 3ten veränderlichen Größe u. s. w. 
fort. Betrachtet man t, als die erste veränderliche 
in Z, so ist dZ = pdt, d Z ---- Adt2, woraus sich 
p =0, unt> a > o für das Maximum ergiebt. 
Wären t und u beyde veränderlich, so würde dZ = 
pdt t sdu erfolgen, und diese Gleichung, wegen 
p = o, in dZ = qdu übergehen, woraus folgt, daß 
d2Z = (Bdt f cdu) du; da nun p = 0, so ist auch 

dp = o, und Adt f Bdu = oz oder dt ’= ■— 

subftituirt man diesen W?rth, in der vorigen Glei­
chung, so erhält man

d2Z - f C) du3.
A

Folglich wird q = o und — t C > o für das 

■Minimum, — — f c < o fuv das Maximum 

seyn. Weil nun Apositiv beym Minimum, negativ beym 
Maximum jft, sy entspringt für beyde, die Bedin­
gung AG > b%

S(t
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Ist außer den vorhergehenden, zwey veränderli­

che Größen, auch die dritte x, zu erwägen, so wird 
der Werth von dZ, in Ansehung der drey veränder­
lichen t, u, x gesucht-, und man erhalt

dZ =■ pdt f qdu t rdx,
welche Gleichung wegen p = o, q = o in dZ = rdx 
übergeht; daher bekommt man das zweyte Diffecen- 
zial d2Z <= (Ddt f Edu f Fdx) dx; alsdann suche 
man aus den Gleichungen p = o, q = o oder dp—o, 
dq = o, d. i, Adt f Bdu f Ddx = o, und Bdt f Cdu 
t Edx = o, die durch dx ausgedrückten Werthe, von 
dt und du, so findet man:

dx * du dx.

Nach deren Subftituirung, in tdem Ausdruck d2z, 
gelangt man auf die Gleichung

woraus folgt, daß man für das Maxim um oder 
Minimum, zuerst r = o bekommen werde, sodann
aber

BD — AE
AC — B2

E t F > o

für das Minimutn, und < o für das Maximum. 
Wenn nun der Nenner Ac — B2, der jederzeit posi­
tiv ist, weggenommen wird, so erfolgt

2BDE — CD2 — AE2 — FB2 f ACF > o, 
für das Minimum, und < o für das M a x i- 
mum. Diesen Ausdruck multiplizire man in A, wel­
cher im ersten Fall positiv, und im andern negativ 
ist, so erhalt man:

sABDE
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2ÄBDE — ACD4 — A2Ea — AB2F f A2CF > o, 
sowohl für das Maximum, als Minimum, d. i.

(CA — B2) (FA — D2) > (AE — BD .
Wie groß auch immer die Zahl, der veränderlichen 
Größen gewesen seyn mag, so wird dennoch immer 
die Sache, nach eben dieser Methode bewerkstelliget.

Diese neue Theorie, erläutert der berühmte de Ta 
Grange, von welchem wir selbige hergenommen ha­
ben, durch folgende Beyspiele:

Erstes Beyspiel.

Wenn eine beliebige Anzahl, vollkom­

men elastischer Kugeln, in gerader Linie, 
jede von der Andern abgesondert, sich befin­
den, von denen die erste, mit der gegebe­
nen Geschwindigkeit c, sich zur andern, die­
se mit der erlangten Geschwindigkeit, sich 
zur dritten, die dritte zur vierten und so 
fort, bis zur letzten bewegt; und der er­
sten und letzten Masse gegeben worden, die 
Masse aller mittlern zu finden, so daß die 
letzte Kugel, die größte Geschwindigkeit 
unter allen, durch den Anstoß erhält.

Es sey der ersten Masse a, deo letzter« b, und 
t, u, x, y rc. die mittlern unbekannten Massen, so wird 
nach den bekannten Gesetzen des Stoßes, die Geschwin­
digkeit, welche die erste Kugel a, der andern t mit- 

theilt, gefunden = ferner die Geschwindigkeit, 
a 7 t

iet » Ä.
K jener

welche die zweyte
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rc.

dZ. 
Z ’

jener der 4ten x, durch den Anstoß der zten ist

G (a st) <t f u) (u t x) U‘

Es kam daher die Geschwindigkeit der letzten bz aus­
gedrückt werden durch:

2catuxy ..... b
(a t 0 (t t u) (u f x) (x t y)................. '

folglich muß diese Größe, ein Maximum seyn. Man 
setze diese = z, und nehme auf beyden Seiten Loga­
rithmen, so erhalt man

12catit f lu flxf lyfzc. — l(aft) — l(t f u) — 1 (u f x)
— i(x f y) — rc. ;= 12 , 

hieraus entsteht durch die Differenziation
dt + du ' dx . dy.
T T — T — T — T2C.t u x y
dt dt*j*du  dufdx dxfdy

aft t -j*  u u f x x f y
werden nun die Glieder, mit eben demselben Diffe- 
renzial verbunden, und auf einerley Benennung ge­
bracht, so bekommt man:

Zfäu—t2)dt Zftx—u2)du Z(uy—x2)dx
dz £=-------------------f---------------------+------- --------------4

t(aft) (tfu) u(tfu)(ufx) uvufx) (xfy) ‘ 
worauf für das Maximum und Minimum, fol­
gende Gleichungen sich ergeben:

au = t2; tx = u2; uy = x2 rc. welche die Analogien 
a:t=t:u=u:x=x:y 2C. darbieten, und jtvslv

■— a : t : u : x : y : . . . . b;

bilden daher die Massen aller Kugeln, eine geo­
metrische Progression, aus den beyden äußersten Glie­
dern a und e bestehend. Damit wir aber auch das
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Maximum, ivom Minimum unterscheiden können, so 
sey der Kürze wegen:

z z . . z
-------------------—5 » *  ----------------— t=S C ;------- ------- — styis
t ajt) (tfu) u(t;u) (ufx) x(ufx) (xfy) 
folglich, wenn die Gleichung §. 2, hiermit verglichen 
wird, so ist

P = » (au — t*);  q=:C(tx—Ua); r = y(uy—x2); re. 
also

dp = (au—ta) d» f » (adu— 2tdt) ; dq = <tx—uö) dck
•f £ (xdt 's" tdx—2udu) ; dr = (uy—x2) d> "fy (ydufudy 

~~2x dx); rc. 
Da aber die Glieder a, t, u, x, y re. stetig proportio­
nal sind, in Rücksicht der beständigen Verhältniß 
1: m, einer jeden vorhergehenden, zu seinem nach­
folgenden Gliede, so werden wir

t = ma, u = m2az X = m’a, y m4a re. 
finden, desgleichen

diese in den vorigen Ausdrücken, suhstituirtett Wer?

the, geben:
dp = <»a (du —

dq — «a (dt

2mdt)
2du
m

folglich wird, wie oben bewiesen worden

A —2m«a
2«a «a

Bs=;aa ; C= ■——;D = o;E= —-; m ’ ’ m
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seyn. Hieraus erhellet sogleich/' daß A negativ, und 
werden die übrigen Bedingungen erfüllt, so ist die 

Größe
2 catuxy ♦ . ♦ * . b

(a f t) (t f u) (u t x) (x t /)  
oder die Geschwindigkeit, welche der letzten Kugel 
mitgetheilet worden, ein Maximum. Da nun

AC c= 4«2aJ, u. B2 = «t9a2, 
so wird deshalb I. ac > gefunden. Es ist ferner

AC — Ba = 3* aaa; FA—D’ = EA — BD = — m

• (AC—B3) (FA—; u.(EA—BD)»=

4»4a4
‘ 2" »m

hieraus erfolgt
II. (AC — Bg) (FA — Ds) > (EA — BD)’. 

Waren blos lzwey Kugeln, so ist es genung, wenn 
man nur die erste, dieser Bedingungen erfüllt, und 
wenn drey Kugeln dazwischen sind, so ist die zweyte 
Bedingung hinreichend, folglich vermehrt sich die 
Vielheit, nach der Zahl der veränderlichen Bedin­
gungen. Wird nun unverdrossen, die Rechnung noch 
weiter fortgesetzt, so werden alle Bedingungen dieses 
Problems, erfüllt werden, und man wird behaupten 
können, daß in jeder Reihe, stetig proportionirli^. 
cher Kugeln, die der letzter» mitgetheilten Geschwin­
digkeit, durch die Mitwirkung der dazwischen befind­
lichen, unter allen möglichen die größte sey.

Diese Aufgabe ward zuerst von Ugenius, hernach 
aber von andern Geometern behandelt; allein es 

Herr-
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herrscheten in derselben, keine zuverlässige Bestim­
mungen, welche wir hier als nothwendig, für die 
Existenz und Unterscheidung des Maximum, und Mi­

nimum erfunden haben.

Zweytes Beyspiel.
Es sey die Allgemeinegleichung der 

Flächen, von der zweyten Ordnung: 
za ---- ax“ f 2bxy f cy2 — ex — fy ;1 

man soll den Punkt der Flache finden, wo 
die Ordinate z, unter allen die Größte 
oder die Kleinste wird.

Nach genommenem Diffcrenzial der Gleichung, 
entdeckt man:

2zdz ES (2ÄX f 2by — e)dx f (,2bx f 2cy /)dy; 
hieraus bekommt man folgende zwey Gleichungen: 

2ax t 2by — e 0; 2cy f r?bx —f = o, 
welche

ec -— bf af— eb
X **“ ä(ac — b2) ’ 7 2 (ac. — b!)

geben. Man nehme das zweyte Differenzial, so 
wird man wegen dz = o,

2zdsz = 2ad"xa f 4bdxdy f 2cdy° 
finden. Damit aber die Ordinate z, unter allen die 
größte sey, so müssen die Größen a und c, bey­
de negativ seyn, hingegen positiv, damit sie die 
kleinste sey. Wenn aber unter Voraussetzung die­
ser Bedingung, die andere ca > bb mangelte, so 
wurden die gefundenen, und in der Gleichung der 
Fläche subftituirten Werthe x und y, die Ordinate z 
keinesweges ein Größtes oder ein Kleinstes ma­
chen. Es hat daher unser Autor, im Anhänge 

der
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der EinleituiVg, zur Analysis des Unendli­
chen im 2ten Theil, aus andern Grundsätzen, deut­
lich gezeigt, daß wofern ca nicht > b3 ist, die gege­
bene Fläche, ins Unendliche ausgedehnt, und der 
konischen Assymptote, beygelegt werden könne. Dies 
aber ist gänzlich, dem Begriff des Maximum und 

Minimum, zuwider.
13. Hieraus erhellet, daß die gemeine Methode 

des Maximum und Minimum, sehr oft viele Unbe­
quemlichkeiten, und Irrthümern unterworfen sey, wenn 
man nicht, in sofern die Rede von mehreren, verän­
derlichen Großen, einzeln für sich betrachtet, die un- 
getheiltefte Aufmerksamkeit anwendet. Gleich wie im 
vorhergehenden Beyspiel, wenn wir bloß x, als eine 

veränderliche Größe, betrachten, so finden wie das 

erste Differenzial 2(ax f by — ~)dx, und das zwey­

te 2adx2; desgleichen wenn y, als veränderlich ange- ' 
sehen wird, so bekommt man für das erste Differen- 

f
zial 2(cy "f*  bx — —) dy, und für das zweyte 2cdya‘. 

Werden diese beyden ersten Differenzialien, gleich 
Null gesetzt, so geben sie diejenigen Gleichungen, 
welche wir im vorhergehenden gefunden lhaben. 
die beyden zweyten Differenzralien hingegen, deuten 
den größten oder kleinsten Werth, der Ordinate z 
an, so oft nehmlich beyde a und c, entweder nega­
tiv oder positiv waren; allein dies Kennzeichen, in so­
fern demselben die andere Bedingung ca > bb man­
gelt, ist wie wir bewiesen haben, unvollständig und 
fehlerhaft, *

Anm.



Anm. zu Euters Differenziatrechnung. 15t 

Anm. zum XVI. Capitel. II. Theils.
In diesem Capitel, welches die Bernouillische 

Regel, von Erfindung des Werthes des unbestimmten 

Bruches ” enthalt, geschiehet von unserem Autor, 
keine Erwägung irgend eines denkwürdigen Falles, in 
welchem diese Regel zu fehlen schien, wenn man 
nehmlich, nach unendlicher Wiederholung der Diffe- 
renziationen, immer wieder auf denselben unbestimm­
ten Ausdruck 4, kommt. Ein Beyspiel hiervon, ha­

ben wir in der Formel —~-x—, die, wo x=—1 
1:l(i t x)

in o.lo, oder da lo --- — 00 = — 4 in— 
oder 4 übergcht. Denn wenn die Differenzialien, des

genommen werden, so kommt 
d(l + x)

VU7M=~(I t x) [1(I tx)y = -°-^

und kehrt man hinwiederum — (1 t x) [l(i t x)]> 

um in 
— (i x)

1 : UCI t xj]c z
so erhalt man

d[— (I t x)] (l f x) [l(lh)Y _ O .00*

welches wenn man bis ins Unendliche fortfahrt, stets 
einen unbestimmten Werth hervorbringt.

Wir wollen daher diese Klippe vermeiden, und 
ich werde zeigen, daß der Ausdruck olo, welcher der 
gestalt nach, unbestimmt, in der That aber bestimmt 
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ist, gleich Null sey, welches folgendermaßen geschie­
het. Man setze olo = x = x le = ie« (wenn man 
nehmlich e für die Basis, hyperbolischer Logarithmen 
annimmt) so ist lo° = le*;  gehet man von Loga­
rithmen auf Zahlen zurück, so wird o° = ex seyn, 
Es ist aber, wie bekannt

X' X
e«=;if xf-t T-—

2 2 . 3
Also ist

o’ H I f X f - t--------- t —-------t ic*
2 2 . Z 2.3.4

Da nun o° = 1; denn es ist

o° = (a — a)n - n =
(a — a)n

folglich ist
xa 'x3 X4 . 

icitxf-t -— t--------- t rc.
2 2 - 3 2.3.4

welcher Gleichung auf keine Art, genüge geleistet 
werden kann, wofern nicht x --o. Hieraus folgt, 
daß die Größe oto, gleich Null sey. Eben so kann 
auch gezeigt werden, daß das Produkt, aus irgend 
einer Jnsinitesimalgröße, multiplizirt in den Logarith- 
mum, jeder andern Infinitesimalgröße, .nichts anders 
als. unendlich sey. a)

Wem der Beweis von der Größe o° = 1, nicht 
anftehen sollte, der könnte folgenden Vernunftschluß, 
an dessen Stelle setzen. sey *,  desgleichen * eine

a) Von der bewundernswürdigen Art der Größen, lo, 
1 00 rc. S. des G. Fontana philosophisch, mathema­
tischen Untersuchungen. Die XliLte Untersuchung von 
dem logarithmischeu Unendlichen,
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Infinitesimalgröße, so wird »x = 1 f z, wenn z ei­

ne unendlich kleine Größe, von einer unbestimmbarem 

Ordnung ist. Denn es kann nicht *x ---1 seyn, sonst 

Wäre * — 1, welches ungereimt ist. Eben so kann 

nicht = 1 t a seyn (wenn a für eine endliche, po- 

sitive Größe genommen wird) sonst wäre» = (1 ta)*  
s= dem Unendlichen der höchsten Ordnung, wel­
ches gleich,alls widersprechend ist; ferner kann 

auch nicht = 1 — a seyn (wenn a < i), sonst 

wäre » = (1 — ay, nehmlich gleich dem ächten

Diese Größe ist augenscheinlich, eine unendlich kleine, 
der höchsten Ordnung, und dividirt man durch «, 
so würde man die Einheit, gleich der unendlich klei­
nen Größe, der höchsten Ordnung, dividirt durch die 

Infinitesimale der ersten Ordnung, erhalten, d. i. je­
derzeit gleich dem Jnfinitestmalquotienten, welches je­
doch gegen die Hypothese streitet. Es ist daher

= 1 t z, und z kann nichts anders, als eine 

unendlich kleine Größe seyn, lweshalb «x und folg­
lich o°, von der Einheit nur, um eine unendlich klei^
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ne, oder verschwindende Größe, verschieden ist, die 
für nichts geachtet werden kann.

Wenn jemand aus den Gleichungen o° = r —ae, 
folgern wollte, daß nach geschehenem Zurückgang, 
von Zahlen auf Logarithmen, olo = oii = ola, und 
vermittelst der Division durch o, auch lo = h = la 
seyn werde, nehmlich daß das unendliche, negative 
mit dem Endlichen aquiret, und sogar nichts werden 
könne, der würde sich selbst, in die bctrüglichste 
Spitzfindigkeit verftrikken.

Wer würde wohl zugeben, daß jede gegebene 
Größe, durch das absolute Nichts, dividirt werden 
können, besonders wenn das Dividendum selbst, ein 
absolutes Nichts ist, die eine Größe § d. i. eine un­

bestimmte und schwankende darböte, und keinen Werth 
gäbe? — Dies sind Hirngespinste unseres Verstan­
des, welche die unauflöslichsten Verwirrungen er­
zeugen.

Ende der Anmerkungen.

System
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Erklärung einiger Hindenbürgische Zeichen.

§. I.

"A, wY, . . . . . m9?, bezeichnen die Bi­
ll omialcoeffizienten , der mten Potenz eines 
Binomium vom 2ten Gliede an; unter-"N wird nicht 
etwa der izte Coeffizient, sondern der allgemeine w 
bestimmte nte Coeffizient verstanden.

Es ist daher
m 

wA — 
i
m . m — r

I . 2
m . m — I ♦ m — 2

m — 1 ' m — 2 .... «n — fn —_T)
- I . 2 . 3 t ♦ . (n — i) n

^en (n dz i)ten, (n dz 2)ten, (n dz r), anten, 
(2n dz r) ten Exponenten m gehörigen Bino- 

y / mial- 
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mialcoeffizienten, bezeichnet Herr Professor Hinden- 
burg mittelst seinen Distanzcxponenten sehr 
glücklich folgendergeftalt

2±2 2±r n n^r
“91/ "'N, ,n9?, .... (Hindenburg.

Novi Syst. Perm. 1781. S. XL, 9. ferner S. XXXVII.
±rn izr

XXXIX: LXV, LXVI.). u. s. w. haben ähn­
liche Bedeutung.

§.

Formeln wodurch nicht die Werthe der Coeffizien- 
ten, oder Glieder irgend einer geordneten Reihe, 
selbst angegeben, sondern nur ihre Stellen nachge­
wiesen werden, nennt Hr. Hindenburg, lokalfor­
me ln, für Coeffizienten dient der Buchstabe %, für 
ganze Glieder, 7 auf folgende Art.

o
(a f b)In%n = m9? oder = WN, ferner

2±T
(a ck b)m %(n Jx 1) = "M

~*~ r
(a t b)m x(n ~ r) = 11191

n±;r
(a t b)mx(2n4: r) = -^N

Eben so bedeutet
(a t b)m 7(n t 1) das (n f l)te Glied der mten 

Potenz von (a f b) z. V.
(a t b)3 ^3 ist =3 3 und (a f b)37 3 = 3abe. 

Allgemein, wenn p irgend eine geordnete Reihe be­
deutet so ist p%(r :± s) der (r ztz s)te Coeffizient der 
Reihe p ferner wird, wenn q, auch eine wohlgeord­
nete Reihe bedeutet pm. qn % (r s) der (r ±: s)te

Coef-
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Coeffjzient des Produkts pm qn andeuten. Nach der­
selben Analogie bedeuten

p7(r 2h s), pm 1 (r 2h s), pm. qn 1 (r 2h s)
das (r 2h stc Glied, von p, von pm und- von p™.g*  
(Nov. Syst. Perm. S. XXXIII, 2.)

Lehnsätze welche vorausgeschickt werden 
müssen.

— I)
also offenbar —1

2+2: ^N.n ss 2h:

§. 3.

I. fehnsatz.
— T 

Es ist 2h. “’SR.n = 2h M.m
oder welches einerley
2h' n [(a f b)m %n] = 2h m[(a t D«-1 %(n — i)j

§. 4. 
r Zusatz.

Aus §. 3. folgt unmittelbar daß

--—m[i—m-'BJ=—mfl=± 
(i— — . (o)™-x

also
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also auch

— i
dz = t= zp m[(i *— (n — i)].

§• 5-
2. Zusatz.

Da aus §. z. erhellet, daß nicht nur die Sum­
men aus den beyden Reihen des §. 4, sondern auch 
die gleichvielsten Glieder aus beyden Reihen, einzeln 
genommen einander gleich sind, d. h. daß nicht allein 
p=—mq sondern auch plr =—malr, so bleibt auch 

—mU. 1. .2.B.—U'C.3 .Cf,...>nN...
—I

=■—m[l. A— . Bf m-TQ5»C .... 0....]
was für Größen auch A, B, c u. s. w. bedeuten 
mögen.

§. 6.
II. Lehnsaß.

In §. 4. war
ä = (1 — i)™-1 = om-1 also ist
5 = o fut: m — 1 > o t>. i. fuv m > r. 

itnb fl = 1 nur für m — 1 0 o, d. i. für m = 1.
Setzt man
i—wC... — '»N....---- (1 — ?)« 

so ist auch * = o nur für m > 0
und « — 1 nur für m =0.

Beweis.

Wenn m — 1 = 0 ist, so ist (a — x)m-', auch 
für jeden Werth von (a — x) gleich 1, wie aus der 
Lehre von den Potenzen bekannt ist, also auch wenn

x=a a

1
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x = a, mithin a — x = o ist, so daß o° nichts an­
ders als 1 bedeuten kann, nur für jeden andern 
Werth von m — 1 (nur nicht unendlich groß) ist 
o1"-1 = o. Das o° = 1 erhellet auch so

(a — a)n
o° ist = (a— a)n-n = ----------- --  = In = I

(a — a)n

§. 7.
III. lehnsaß.

Es sey
7 = 1.q—u,y(q--a)-f*nS(q, —2a)...~m^(q—na)... - 

so ist 7 = 0 nur für m > I
und 7 = rna nur für m = I 

wenn m, q und a jede Größen, nur nichts unendlich 
Großes bedeuten.

Beweis.
Von der Reihe q.« (§. 6.) ziehe man die Reihe 

2*  ; so erhält man die Reihe 7 des Lohnsatzes
wie folget: von

q. «=I.q—^Aq -f-wU q ....... .q. .....
J=a —n'A.l .a-fwB.aa ..... . na

mithin
q«—J=I.q—1‘n$l(q—a)tmS3(q—2a).. .~m9?(q—na).., 

Nun ist (§. 6.) £ = — ma (i — i),n - 1, folglich 
muß (§. 6) seyn

J = — ma . o nur für m > i
5*  = — ma . I mit für m = i 

ferner ist « = o nur für m > o.
Da nun 7 =s q.» — 3*  gefunden ist; so würd 

7 =3 q.o f ma.o mit für m > i unt> 
7 =a q.o f ma. i nur für m = i

und
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und diese beyden Gleichungen geben den Lehrsatz mit 
seiner Einschränkung, daß m, q, a eigentlich nur im 
ersten Satze, nichts unendlich Großes bedeuten. Der 
Beweis hätte auch können folgendergeftalt geführt 

werden.
q»—$‘c=q(i — — l)m-t
= [q(I — i) f ma] [i— = f ma(l — i)111-*/

woraus aus §. 6. sogleich folgt daß
für m>i und 7=ma. I für m = I;

*

§. 8.
IV. Lohnsatz.

Wenn m, a und q, wie vorhin, yichts unendlich 
Großes bedeuten, «• aber eine ganze und positive 
Zahl ist, die übrigens auch ins Unendliche wachsen 
sann: so ist die Reihe
I, qv — w'A.q—a)^ t wB(q—2a)^ ...qz»191(q-na)!r

..... =□ i 
hier ist i = o nur für m > «r und dagegen

es a”". m. m — I ♦ t 2 . I UM- für m -- -r
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Nach (§. 5.) ist die abgezogene Reihe

£ = — ma[l.(q—a)r —2a)*" ..

(nf I»*]
Vorausgesetzt also, der Lohnsatz gelte wirk­

lich für irgend einen bestimmten Werth von 
jt, so hatte man, weil q und m im Lohnsätze jede 
Größe, folglich auch q — a und m — i bedeuten 
können, daß £ = — ma.o mit*  für m — i > » d. i. 
nur für m > sr f i und

--- — ma. a”". m — I . m — 2 . . . 2 . I NUk für 
m — i = » t>. i. nur für m = » i.

Da nun im Anfänge dieses Beweises --- q- — § 
gefunden worden, so wäre unter der gemachten Vor­

aussetzung 1 = o.q t ma.o nur für m > < f i 

Unt)r= o.qf ma.aT. m — i.m — 2...2.1, mit*  für 
m H/ f:I odtf

11 = 0, nur für m >»f i

und = ax : 1. m . m—I .... 2 . I, nur für m =— t f I.

. Betrachtet man die gleich Anfangs durch n be­
nannte Reihe so sieht man, daß diese beyden letzten 
Gleichungen nichts anders als den Lehnsatz selbst dar­
stellen, indem man O t i) statt » darein schreibt. 
Es ist also erwiesen: wenn der Lehnsatz für irgend 
einen bestimmten Werth von * gelten sollte, der b 

heißen mag; so würde er auch für «• == b f i gelten 
Da nun der Lehnsatz, nach (§♦?♦) für b = i wahr 
ist; so gilt es nach diesem Beweise auch für » ---> i 

f i = 2. Also kann man b --- 2 voraussetzen, und 
es folgt daraus durch wiederholte Anwendung des

6 Be- 
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Beweises, daß er auch für »=2^1=3 gelte 
u. s. w. für jede ganze positive Zahl statt «■ gesetzt. 
W. Z. E.

2lnm. Diese Lehrsätze finden sich in Herrn Professor Busse, 
vortrefliche kleine Beyträge zur Mathematik u. s.w -stex 
Theil. S. 36 — 40, nur einige unter einer andern 

—1 ,
Form, für ln^, steht bey Busse — i. Die hier 
gebrauchte Hindenburgische Bezeichnung ist offenbar weit 
bequenrer.

Fortsetzung der Hindenburgischen 
Benennungen.

§• 9- 
0123 r
y, y, y, y...y seyn Glieder einer, nach einem be^ 

stimmten Gesetze fortgehenden Haupt- oder Grund­
reihe (Teries propoßta, primitiua). Es stellt nehmlich 
hier y jedes unbestimmte Glied der Reihe, und, 
mit den Distanzexponenten o, 1, 2, . .. r ver- 

o 
bunden, dieser Glieder Folge dar. Auch sey y d. i.

1 2
y das erste, y das zweyte, y das dritte, u. s. 

r
w. y das (r t i)te Glied der Hauptreihe.

§. 10.

A1, Aa, A3 .... / ohne Beyfügung von
0 x 2
7, /, y.... sollen überhaupt Reihen, der ersten, 
zweyten, dritten . . mten Differenzen der Haupt- 
reihe (die Differenzen wie in Eulers Differenzialrech- 
nung erster Theil §. 7, oder Kastners Analysis 
endlicher Größen die gte Aussage §. 724. S. 505 ge­
nommen und verstanden)

undL 3
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und Ax7i, A'72...A°7Z....A'74...A'" 7 r 

il s. w. dieser Reihen iftes, 2tes, ztes, 4tes...rtes 
Glied bedeuten. Folglich ist Am 7 (r f i) dus (rfi)tc 
Glied in der Reihe der mteit Differenzen der Haupt­

reihe.

§.. II-

ZVy, A'y...ZVy, ZVy .--A’y, A’y---A”y, Amy... 
bedeutete erste, zweyte, dritte...wie Diffe-

O I
renzen der Glieder y, y... der Hauptreihe. Also 

r r r-ps
4’«y die mte Differenz von y, und Am + n y die 

rfs
(m t n)te Differenz von y, dem (rfs f i)tcn Glie­

de (§. 9.) der Hauptreihe.

Anm. Die Benennungen in H. 9, 10 und II giebt Hin- 
-enburg im ersten Stücke des Archiv der reinen undran- 
gewandten Mathematik S. 93 — 95. Eulers Zeich­
nung stehet tut ersten Theile seiner Differenzialrechnung 
tz, 2. und 23, die von Kastners stehet »in seiner Anal, 
endl. Gr. $. 724. II. ^Karsten, Busse und andere, 
zeichnen nach Euler. Folgendes dient zur Vergleichung 
ner verschiedenen Bezeichnungen.

Nach

—2 —1 0 -fr fz r
-Nach Hindenburg ... 7/ 7/ 7, 7/ 7• * ... y

Taylor...
u V

. . 7, 7/ 7/// • 7 w')

Cousin.. ♦%. . "y, 7 , 7/ 7/ /...

Euler.... . .7»/ 7x, 7, y'r 7* 1 .. ... yR

Käftner . .<. . .y—2fy— 1/7, 71/ 72 .. yt ***}

*) Taylor Meth. Increm. P« 3*
**) Cousin Le^ons de Calc. diffJetiint. Paris L Theile

in gr. Ott. 1778. eine neue vermehrte Auflage in 2
Quart-
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Nach Hinhenburg A^i, A1^... A213.. A'U.. Am7r

Käftner... 1A1, 2A1 ...3A2..4A3 ..rAm

Euter
Quartbande erschien 1796 unter dem Titel Tralte &c. 
»voföt ich in Berlin 10 rthl. bezahlt habe. Eben diese 
Bezeichnung hat auch La crojx Tralte du Calc. ditf. 
et mt, 1797 2 starke Quartbände, die ich in Berlin 
mit 12 Thl. bezahlt habe.

***) y — 2, y — 1, habe ich «ach der Analogie selbst 
geformt.
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Euler schreibt auch im ersten Theile der Diff. (§.23.) 
(»).*)

y
Solche willkührliche Bezeichnungen wie bey Tay­

lor und Cousin, hat Hindenburg durch den Gebrauch 
seiner Distanzexponenten in eine Wissenschaftliche 
verwandelt. Ueberhaupt ist das Hindenbürgische 
combinatorische-analytische System von Zeichen durch 
und durch vortrefiich (Nov, Syst. Comb. p. XXXII. — 
XLIX. — LVI.). Noch muß ich erinnern daß Busse 
t t
y, zu (t)ten Gliedern rechnet, welches nicht so 
bequem, als nach Euler und Kaftner sie zu (t f i)ten, 
zu rechnen, ist. Diese letztere Zählung hätte Herr 
Busse, in seiner sonst sehr lehrreichen Schrift, manche 
Zurechtweisung erspart, und überflüssig gemacht.

-
§. 12.

Uebersicht des folgenden.
Der folgende erste Lehrsatz enthalt die Formeln, 

wonach jedes beliebige (t f i)te Glied der mten Dif- 
ferenzreihe aus den Gliedern der Hauptreihe ausge­
drückt wird. Dieses (t)te Glied der mten Differenzreihe 

t
ist zugleich die mte Differenz des Gliedes y,des(tfi). 
Gliedes in der Hauptreihe, und wird deshalb durch 

t
&my bezeichnet.

In Euters Differenzialrechnung erster;Theils. 
wird die Jnduction für diese Formel nur bis auf 

ZYy fortgefühct.
*) Lagrange, Cousin, Prony, Laervsx u. s. w. ha­

ben auch in ihren Schriften y^
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X

xfw

xfsw

x^gw

xfqAv

xftxv

xi (tfi)w

In folgendem Schema

Haupt­
reihe

y
1 
y
2
y
3 
y
4 
y

Reihe deriften
Differenzen

Reihe der 2ten
Differenzen

Reihe der Zten 
Differenzen.

2 1
Aay ~ y — 2y f y

15 21
A2y — y — 2y ch y

2 4 3 2
A2y = y — 2y 7 y

Reihe der 4teit Diffe­
renzen

3 2 I
A'y—y—zychzy—y

14 321
A y=y—3yt3y—y
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bedeutet y eine beliebige Funktion von x, welches be- 
stand:■ um einerlei Größe wachset; so, daß die 
Oachschümer w; 2w; gw u. s. w. eine arithmetische 
Reihe ausmackcn, übrigens aber jede beliebige end­
liche und unendliche Größe start n gedacht werden 
kann

i
y bedeutet die Funktion von x, welche man aus

7 wenn man darin x f w statt eines jeden
2

x schreibt, y bedeutet diejenige Funktion, welche eben 
i

so aus y entsteht, indem man wiederum x f w statt 
i 3 4

eines jeden x in y schreibt. Eben so entstehen y, y 
u. s. w. (vergl. §. 9.)

Hieraus erhellet sogleich, daß die Funktion y auch 
unmittelbar aus y entstehen muß, wenn man sogleich 
x f 2w statt eines jeden x in y schreibt. Und so ent- 

tfi
stehet nun überhaupt y , das (t t a)te Glied der 

t
Hauptreihe, entweder aus dem (t f i)ten Gliede y, 
indem man darin x t w statt x schreibt, oder un­
mittelbar aus dem ersten Gliede y, indem man darin 
sogleich x f (t f statt eines jeden x schreibt.

§. -4-
Zur Erklärung der Differenzen - Säulen stn die­

sem Schema gehören noch folgende Satze.
t tfi t

i) Die Gleichung ZVy = y — y in der Säule 
d. R, der ersten Differenzen stellt im allgemeinen das 
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Gesetzt dar, wonach ein jedts Glied der ersten Diffe- 
renzenreihe aus zwey Gliedern der Hauptreihe ent­
steht, welches schon bey den ersten drey Gliedern ganz 
deutlich in die Augen fällt.

, t '■tfi t
2) die Gleichung AinTI y = ZXm 7 — Z\my b. L 

ZXmt 11 (t f I) =. 1 (t + 2) - 1 (t 11),

bedeutet demnach in Vergleichung mit *'No.  1.) nichts 
anders, als daß das nehmliche Gesetz für das ganze 
Schema gelte, oder das die (m f i)ten Differenzen 
aus den nächst vorhergehenden mten Differenzen eben 

so entstehen sollen, wie die iften Differenzen aus der 
nächst vorhergehenden Hauptreihe. Daher ist im 
Schema (hier fortgesetzt bis A5y) z. B.

1 654 321
A6y, als A?y—Ary/ =y—öy-j-isy—2Oyfi5y—-6yfy 

«. st w. geschrieben.

3) Aus der Gleichung in (No. 2.) folgt unmit­
telbar

(t t 2) = Ähl3tI7(tfi) t 1)

biefe Gleichung zeigt das Gesetz der Glieder jeder 
Reihe der Differenzen, aus der Summe der um 
erns niedrigern .Gliedes derselben und der um eins 
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höhern Differenzreihe. Z. B. Es sey m e= 2 und 
r --- i; so ist

A2y = A3y t A2y d. i.
A21 3 = A3 7 2 f A3 7 2

Aus dem Schema hat man
1 4 3 2 r

A3y = y -- gy f 37 ~ X
1 321

A2y = y — 2y f y addirt, giebt

24 3 2
A2y = y — 2y f y, 

wie es sich gehört.

§- i$-

Zusatz.
Wenn man A*  der Analogie nach bildet, dabey 

aber überlegt daß dieses Zeichen dem Ausdruck vor 
dem es stehet, unbeschadet stehen oder wegbleiben 
kann, so umfaßt die Gleichung unter (§. 14. N0.2) 
wenn man m = o setzt zugleich auch die (§. 14. 
No. 1) nehmlich

, t tfi t
A^1 y = A1 y — A°y,

oder wenn wir A° gänzlich weglassen
t tfi t 

Axy = y — y»

§. 16.

Daß m und t, nach dem eben erklärten Entste- 
hungsgesetze des Schematis, keine negative oder ge­
brochene Zahlen, sondern nur die ganzen Ordnungs­

zahlen
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zahlen bedeuten könne, ist daraus klar, weil die an­
gegebene Entstehungsart nur auf iste, 2te zte u. s.w. 
mte Differenzenreihe, und deren iste, 2te, zte u. s. w» 
(t t i)te Gliede führen kann.

Sollte der Werth von m oder t auf negative 
Zahlen ausgedehnt werden, oder verlangt man «für 
gebrochene Zahlen zu interpoliren; so muß dies erst 
besonders gerechtfertiget werden. Wir verstehen hier 
unter m und t alle ganze positive Zahlen und, wie 
§. 15 angemerkt ist, auch 0.

§• !?•

Im Schema sind die Werthe einiger Differenzen 
durch Glieder der Hauptreihe ausgedrückt. 
Frägt man nun, wie man den Werth eines be­
liebigen (t f i)ten Gliedes in einer beliebt- 
gen mten Differenzenreihe durch Glieder 
der Hauptreihe ausdrücken könne; so hat man 
dafür den folgenden Lehrsatz.
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Lehr s a H.
Es ist

t s
Amy I

1   A mft nist—i nist—s —i m-f-t—(n—i) n—r mft—(an—I) n mft—an c
Am7(tti)LT *y—m$l* y y — y y -^-»N y...~i.y.

Diese Reihe hat fm f i) Glieder, deren Zeichen vor dem iften, aten. (n — i)tett

—i
(2n — i)ten, anten Vinomialcoefficienten von Exponenten m, d. i. vor wU, mgj .. . m$R , . , 
n—I n
^N, . wie hier steht, abwechseln. Das letzte Glied “ i. y hat das obere oder untere Zei­
chen, nachdem m eine ungerade oder gerade Zahl ist. Eben so verhalt es sich (mit dem 
(n — i)ten Gliede.

Beweis.

Vorausgesetzt, es gelte der Lehrsatz für irgend einen bestimmten Werth von 
m; so wird hierdurch, weil t im Lehrsätze jede positive Zahl, also auch (t f i) bedeutet, zu­
gleich vorausgesetzt, daß auch Am'



r-
H

tfr mftfi inst nist—1 m(t—(n-i) n tust—(afi~i) nfi mft— an tfi
ZXm y ssi.y —• 1»31 y f mB y...± r»N. y.... 777 '»N y «± .N y... I »y

dazu t mft mft—I — imft—(n—i) n—i mft—(an—i) n mft—zn tfr c
addirL —Amy= — i ♦ y t "A y... ±. l«N y.... ZJ7 m9t y ±_ «'N y...-r- raM. y±i.y

giebt ZXmt‘
t mft+i mft , mft—i , mft—(n— 
y^i.y—ln^Ay-j-^V y...±m^ y...

i) , n tfr t 
y—i *r

Die zweyte Gleichung ist nehmlich nichts anders als der für einen bestimmten Werth von m 
vorausgesetzte Lehrsatz mit gerade entgegengesetzten Zeichen geschrieben; und die Richtigkeit der Addi­
tion erhellet bey der Linken Seite aus §. 14. No. 2, Bey der rechten Seite .überzeugt man sich durch fol­

gende Schlüsse.

1

In mei-
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In meiner Ausgabe von Eulers Algebra, habe 

ich im ersten Theile H. z6i. Zus. i. bewiesen das

 m.m—i.., .[m—(n — 2)] mfi 
I .2.... (n — 1) * n

__ (mtl)nan—-I.... [ 1)—fn—1)]
1.2. z... (» — 1) tn 

dieser letzte Ausdruck ist aber der nte Coeffizient von 
(a f b)111*1; also gleich mithin auch

ni9i f m3i

Ferner ist "A = — daher auch

f I = - f I = -----i— —

Die erwiesene Gleichung

»'N t --- m*x9L

gilt für jedes Glied der addirten Reihen, denn wenn
S —I

mgfj es m35 gesetzt wird, so ist "N = wU; für ms^t
—1

c= »tC ist m9t ---- m33. u. s. w. — Wollte man
—1

= -"A setzen, so würde m9iz der vor dem als ersten 
gezählten Coeffizienten °»A, nächst vorhergehenden be­
deuten, im binomischen Lehrsatz, hat aber das erste 
Glied keinen andern Coeffizienten als 1, also in die­

sem Falle ist «N --- i, mithin erstreckt sich auch die 
Gleichung

»N
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wN f '"N ---- auf dem Fall

t 1 = . den wir vorhin schon

bewiesen haben.
Betrachtet man nun die letzte Gleichung, so sieht 

man, daß sie gerade zu aus der vorausgesetzten 
Gleichung für den bestimmten Werth von m entstehen 
würde, wenn man darein (m f 1) statt m schriebe. 
Folglich gilt der Lehrsatz für m --- a f 1, wenn er 
für m = a kann vorausgesetzt werden. Da nun dies 
nach §. 14. No. 1. geschehen kann für a = 1; so gilt 
er für m — i 7 1 — 2, Dies vorausgesetzt gilt er 
demnach für m = 2 t 1 = 3 u. f. n»., daß m jede 
ganze positive Zahl bedeuten kann.

Anm. Wenn der Herr Professor Busse in , feinen obengex 
nannten Beyträgen, ister Theil S. 34. §. 24, behaupt 

tet daß die Gleichung f
«icht aber dem Fall »”Jl f 1 --- mtl§t 
angewendet werden könnte, weil N nicht = 1 gesetzt 
werden dürfte, so liegt der Irrthum bey Hrr. Busse of­
fenbar darin, daß er nicht an der richtigen Bedeutung 
von m2l, inB, mC....mN, denkt. Denn da A mit ei­
nem oben linker Hand geschriebenen kleinen Buchstabe» 
oder Zahl, als erster Binomialcocffizient angesehen wird, 
und N mit einer oben linker Hand beygeschriebenen 
Buchstaben überhaupt ein allgemeines ntes Glied dieser 
Binomialeoeffizienten vorstelleu soll, so kann ja N, wohl 
= A, B, C, u. s. w. gesetzt werden, aber nie = 1, 
da 1 kein Glied der Reihe ist zu der N als allgemei­
nes Glied gehört.

Wird m == 1 gesetzt, so ist für diesen Fall
(a f b)ul = (a "i*  b)1 = a b == i . a f *21  b; 
und mN ist alsdann = = | = i ferner

—i —i
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N kann also nur in dem besondern Falle = 1 gesetzt 
werden, wenn A ---- 1 wird. Vielleicht ist Herr Busse 
selbst durch seiner Art dem (n — i)ten Binomialcoeffi- 
zienten darzustellen, zu dieser unrichtigen Behauptung 
verführt worden, den er so angiebt "N — b wird hie^ 
SRt=3i so istN —I---o. Zu diesen falschen Folgerungen 
verleiten die Hmdenbürgischen vortreflichen wissenschaftli, 
chen Bezeichnungen nie, und wer erkennt hier nicht die 
wesentlichen Vorzüge der Hindenburgischen Drstanzex- 
xonenten, vor jeder ander» willkührlichen Bezeichnung.

§. 18
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§•
Zusaß.

Für m = n und t = o, erhalt man aus §. ig,
Any f' | ,n n—1 n—2 —1 i

— A l.y—«A. y f n33 y y " i.y
An7r L

Diese Reihe rückwärts geschrieben, oder in §. 19$ 
m = n und t = o gesetzt, giebt

Any s
“> I  1 2 —i n—1 n

— 4- i.y^A.y 4- °By y fi*y
A"1i l

diese zwey Reihen stimmen genau, mit denen überein, 
welche der Herr Hofrath Kaftner, in seiner vortreft 
liehen Anal. endl. Gr> 724. IV. und in XI. nach 
seiner Art zu zeichnen für iAn giebt. Die Reihen, 
welche er noch in IV. für sAn und iA(n f 1) giebt, 
erhalt man aus unsere allgemeine Formel §. 18, wenn 
man einmal m = n und t = 1 setzt, und dann 
wieder m = n f 1; und t ss o*  Im ersten Fall er­
hält man

' 1 v
Any r7 j nfi 11 n—I —t L t 

= -<1. y —nA.yi-»B. y ... ^«N.y i.y
A"72 l

oder rückwärts gelesen wie man solche aus tz. 19^
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Antl

Z\ntl

Im zweyten Fall ist

y

oder rückwärts gelesen wie man solche aus §. 19.

erhalt

A L j"i.y±.ntl2tyTnfr^y.

Z\nt,y L

nfi
y

2fnm. Aus §. 18. und i». erhellet daß die Reihen für 

Any; A"y und für /X^y vorwärts und rückwärts ge-- 
schrieben, einerley Binonrialcoeffizienten haben und daß also 

1 —1
in ZXny und in Any; = n2t = n und "N — 1 ist,
ferner muß in Z\n^ *y ; =a = n f 1 und 

n‘‘I N = 1 seyn.

§- 21.
Uebersicht des folgenden.

y, welches im Schema (Z. 13.) und im Lehrsätze 
(§. 18.) eine jede Funktion von x bedeutet sey nun 
eine beliebige nte Potenz von x, also xn y und

i 2 t
(x f w)n = y; (x t 2w)n = y und überhaupt

(x t tw)« c= y: so lehrt die Formel im nächsten 
das (t -f- 1) Glied der mten Differenzenreihe aus Po­
tenzen von x und aus w, dem Wachsthum des x, 
bestimmen. In Eulers Drfferenzialrechnung wird die 
ses im ersten Theile §. 13. durch Induktion bis für

, y = x2,

1
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y = xa, y = x’ und y = x*,  und zuletzt auch für 
y = x° bis auf A4y gezeigt. Aus dieser letzten bis 
auf A4y festgesetzten Induktion wird das allgemeine 
Gesetz für Amy bey y — xn geschlossen und am Ende 
des 15. Paragragh in einer allgemeinen Formel aus­
gedrückt.

Diese trift aber mit derjenigen nicht überein, die 
nach (§.23.) für Amy aus der im nächsten §. 22. für 

t (
Amy erwiesenen folgt; welche übrigens auch für alle 
Werthe von n gelten muß, wofür der Binomialsatz 
erwiesen ist, ohne daß man um ihre Gültigkeit bey 

negativen und gebrochenen Werthen von n zu zeigen, 
solche einzele Beyspiele nöthig hat, wie in Eulers 
Differenzialrechnung §. 17*  gegeben werden.

M 2 §. 22
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§. 22.

iehrsah II.
' t

Es sey im Schema (§. iz.), y = x», wobey Amy --- Am(x f tw)» wird, und n jede 
t

mögliche oder unmögliche Größe bedeuten soll; so wird Amy = Am7(tti)/ als--A«(xft^)° --- 

"M. xn-(mtt)wmfi^ xst~(mts) wmf$

—mU. [(m—. t<m—ift)m+l - 

chmB . [(m—2ft)mCm—;

« ♦

-rft)® it f (m-—rft)m^r -

wo t wenn r gerade und — «R wenn r
Beweis

- - . ♦ ♦ ♦ t(m—ift)m^s ♦
- -

6 t ♦ ♦.♦t (m—2ft)n^s -
- - ™)

t ch (tn—r

ungerade ist. *
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t msr
Da nach der Voraussetzung y = x«, also y = (x t tw)°; y =□ [x f (m f t) w]n

Hä ■ ■' S. " t nist r
u. f. w., so setze man diese Werthe für y, y, u. f.,w. in der Reihe für Amy (§. 18.)/ so

halt man Ay <= Am(x •f*  tw)n =
I* 1 ♦ [xt(mft)w]n — . [xf(m——rf tW]n ..

Nun enrwickele man die einzele Glieder als nte Binomialpotenzen, so erhalt man: 

A^Cx^txvJass •J’ i , [x |(m f t) w]n ~ f I» [xn*f ‘n5Ixn 1 * (i^tO *w ♦ “1
—m3(.[x‘|,(m—i'ft) xvjn =—5 5. . (m—ist)?*,*}*  ? ' . (m—ifO * 

—2ft) w]n = r > » . (m—2ft)?..t ; f ♦ (m—2^)^ -

A.111R[xf(m—rft) \v}n $5 N .(m—r+t) ;.. f f ' ... -3
*

♦ . 4- 4 '
4 das Aggregat- aller derjenigen Glieder, worin » verkommt, ist also = • 

[l.(rn f t)*  — mU 4 (m—ift 7 t ,n$(m—2Tt)'r 4 4 — r f t)”-, . xn“
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Da man in diesem Aggregat für «P setzen darf, «A, 

»Bu. s. w. und ------1,2, z... m u. s. w. seyn kann, so 
gilt was von diesem Aggregat bewiesen wird, offen­
bar auch für jedes andere von den hier unter einan­
der stehenden Glieder. Nun ist aber bey dem 
hier dargeftellten (p f i)ten Aggregate, der er­
ste in Klammern geschlossene Faktor nach §. 8. 
(dort q = m f t und a = i gesetzt) — o so lange 
m > 7T folglich * < m ist. Also verschwinden alle 
Aggregate der entwickelten Reihe welche vor dem 
(mfi)ten Aggregate vorhergehen, (den auch das erste 
Aggregat (i — »'A f ... ~ ist
nach §. 6. ebenfalls = o), und können deshalb aus 
die Bestimmung des Werthes von Z\m (x f tw)« gar 

keinen Einfluß haben. Daher ist der Werth im Lehr­
sätze , die jetzt eben entwickelte Reihe, von dem 
(m f i)ten Aggregate an. Der erste Theil der Reihe 
im Lehrsätze wird sogleich erhalten, wenn man in 
vorstehenden (p f i)ten Aggregate "P =t «M und 
r = m setzt.

§• 2Z-
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Anm. Vergleicht man diese Reihe mit derjenigen, so im 
im ersten Theile von Eulers Differenzialrechnung zu 
Ende des i^Len gegeben wird

Alpy =:«.I. xn_m . wmf £. K. x* 1' (mi*l)  twm"^ 

t.Lx"—1-n,+2Zwm+2t....

wo I, K, L u. s. w. die binomischen Coeffizienten nM, 
i'i

-»M, »M it, s. w. vorstellen; so siehet man leicht, daß 
*, ß, 7, u. f. w. hier das Aggregat der in n5Xxn'mw”» 
in »M . xn-(mfi). wmtI, in -M . xn-<mt2) 

. ^multiplizieren Theile, vorstellen müssen. Diese 
*, ßi 7 u. s. w, hat aber Euler gerade so bestimmt, 
als sie sich aus dem hier j. 22 erwiesenen Lehrsätze für 

1 *
-Amy = Am72 ergeben würden.

Die richtigen Werthe von «, y u. s. w. wie sie 
unsere Formel-für Amy giebt, sind es übrigens, welche 
bis ZVy berechnet, die im Eulerischen Werke, f. 14. ab­
gedruckte Tafel geben.

§. 24.

Zufa^. 2.
Einige Beyspiele mögen zue Erläuterung der 

§. 33. gefundenen Formel dienen. Man setze m = 3 

ttnd n = 4; so erhalt man
A3x4 = A’y --- --

1.2.3.4 1

I .x°. w4-f*o

1.33
4»3‘2 x „4 
.----- 7—. x . w TI ♦ 3 *
1.2.3

T 3.2,3 3.2*
3.13 t3.i4

—- 1.0’ — 1.o2

6. 4 ,tx\w3f36.

§. 25.



System dep allgemeinen Differenzen. 185

Z. 25. 
Zusatz 3.

Setzt man in §. 2z. m --- i; so wird »M = »A, 

4)i = "B u. f. w. Man hat daher A1/ = AT1r, 

als i— A^”, = 1, u2( xn-x..w f "B x11-2* w2 f . xn~’ w’
. ..s">R ♦ x«~r. wr.... 

denn wenn m t= 1 ist, so verschwinden alle Glieder, 
die m — 1, oder «B, oder die hierauf folgende Bi- 
nomialcoeffizienten zu Faktoren haben, weil diese 
Faktoren jeder für sich 0 Null ist.

§. -6.
Zusah. 4-

Es kommt hierbey die wichtige Frage vor, unter 
welchen Umständen irgend ein (s f i)ter Theil (ich 
zahle den zu wm gehörigenTheil, wie immer als erster 
Theil) der Reihe im Lehrsätze <§. 22.) ein letzter, die 
Reihe abbrechender Theil sey, und unter welchen 
Umstanden hingegen diese Reihe ins Unendliche fort- 
gehe.

Was wir hier (s f r)te Theil nennen, ist eigent­
lich von der Reihe im Beweise wovon der Lehrsatz 
abgeleitet worden, der (m t s t i)te Theil, soll die­
ser Theil verschwinden, so kann es nicht anders ge­
schehen, als es muß wenigstens eines von seinen vier 
Faktoren =3 o werden. Diese wollen wir deshalb in 
dieser Hinsicht einzeln betrachten.
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§• 27.
Der erste Faktor bestehet aus der Reihe

—wZstm——2-ft)mTs ...... 
... l+:miK(m—r?t)mtsJl...

also aus der Reihe 5 in §. 8., wenn man dort 
q = m f tz a = 1 und *•  = m f s setzt;

kann also nur — o werden, für m > m. f s. Dies 
findet nun nicht Statt; sondern es kann s aufs 
kleinste nur = o gesetzt werden, indem alsdann der 
(m t s t i)te schon dem vm f,i)tcn Theil der Reihe 
im Beweise des Lehrsatzes, also int Lehrsätze selbst 
dem isten Theile gleich wird. Wer s negativ setzen 
wollte, der würde Theile bezeichnen, die vor dem 

isten im Lehrsätze, also vor dem (m f i)tcn Theile 
im Beweise des Lehrsatzes vorhergehen, von diesen 
ist aber im Lehrsätze nicht mehr die Rede, weil sie 
alle wie aus dem dortigen Beweise erhellet, ver­
schwinden.

Weder der dritte Faktor x11 (nlts)z noch der 

vierte wm*s,fdnn jemals = o werden; da natür­

lich weder x noch w selbst = o gesetzt werden soll. 
Und wenn man übrigens rauch z. B. w unendlich klein 
annimmt; so kann doch wm^s nur in Vergleichung 

mit niedrigern Potenzen von w verschwinden.

§.. 28.
fs

Es bleibt also nur noch der zweyte Faktor »M 
zu betrachten übrig. Dieser kann nun niemals = o 
werden, wenn n keine ganze und positive Zahl ist, 
wie ich solches in meiner Ausgabe von Eulers Al­

gebra.
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gebra. ifter Theil. Berlin bey Nauk. 1796. im iften 
Zusatz §, 362, erwiesen habe.

§. 29-
Ist daher n keine ganze positive Zahl, so läuft 

die nach den Potenzen w geordnete Reihe des Lehr­
satzes ins Unendliche fort, und enthält nach und nach 
alle Potenzen w»1, wm^r, wmt2 u. s. w. ohn Ende.

§. 30.
Ist aber n eine ganze und positive Zahl; so 

wird die Reihe im Lehrsätze niemals unendlich wer­
den, es mag i) m > n; 2) m = n oder 3) m < n 
werden.

§• 3 b
1. Im ersten Falle, für m > n, wird schon der 

erste Theil und eben so jeder folgende Theil = o,
•pl ps

weil jeder der Faktoren «M; "M; . 
wird. (Meine Ausg. v. Euters Alg. ifter Theil. 
§. 374. 1. Zus.). Daher ist Am(xftw)n --- Am7(tfi) 

t
= Aniy o für m > n.

§• 32-
2. sey m = n. Wenn das ist, so muß mfi<n

pi
seyn, also sogleich der Coeffizient »M und jeder fol- 

t2 p;
gcnde »M; »M u. s. w. verschwinden (meine Ausg.
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y. Eulers Alg. ifter Theil. §. 361. 3. Zus.), und'die 
Reihe bis auf das erste Glied verschwinden, worin 
dann «M als = «N verkömmt: ist also

AH(x y tw)n ss
[(nft)n—”91, n——sft)“....

.... ±n9t(n_rft)n... .^N. y.°. w«; 
also nach §. 8., indem dort

q ™ n Y t, a — i, m = n, t = n 
gesetzt wird und «N --- I ist (m. A. v. Eulers Alg. 
ister Theil §. 351. Zus.)

Am(x i” tw)n = n.n — 1.n —■ 2....2.1.wn.

§*  33*

Daß dieser Werth constant, für alle Glieder in 

der riten Differenzenreihe einerley sey, erhellet schon 
daraus, daß t in diesem Werthe gar nicht verkömmt, 
und man doch das erste, ate, gte u. s. w. Glied er­
halt, je nachdem man t es o, = 1, = 2, = 3 11. 
s. w. setzt.

Ueberdieß aber weiß man aus §. 31. daß A11^1 

(x ch tw)n = o; oder jedes Glied der auf der uten 
Zunächst folgenden (n t i)ten Differenzenreihe = o 
werde; weil n f 1 = m > ben n ist. Nun giebt 
aber die (n f i)te Differenzenreihe, nach dem Sche­
ma §. 13. die Unterschrede zwischen jeden zwey näch­
sten Gliedern der nten Differenzenreihe an: und Grö. 
ßen deren Unterschiede = 0 sind, müssen ohne Zwei­

fel gleich groß seyn.

§/ 34*
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§. 34»
Anmerkung.

Man Übersicht auch hieraus, daß man etwas 
übereilt schließt, wenn man behauptet, daß alle Glie­
der der nten Differenzenreihe einerley Werth haben, 
sobald man nur erwiesen hat, daß das erste Glied 
Der (n f i)ten Differenzenreihe, ZV1^1 x” = o sey. 

Da dieses erste Glied nur den Unterschied zwischen 
Dem ersten und sten der nächst vorhergehenden nten 
Differenzenreihe angiebt; so folgt aus seiner Ver- 
schwindung nur so viel daß die beyden genann­

ten Glieder, das erste und"2te der nten Differenzen­
reihe gleich groß sind.

§• 35«
3) Ist endlich m < n;

so wird etwa m f 1 oder m f 2 oder überhaupt 
mf s = n folglich m f sf r>n werden, indem 
r irgend eine ganze positive Zehl bedeutet. Der Theil 

der Reihe im Lehrsätze, worin nun wm ^'^'vorkommt, 

d. i. der (r f s f I)te Theil hat auch den Faktor 
•J's-f-r
»M und wird deshalb — o. (m. A. v. Eulers Alg. 
ifter Theil. §. 361. 3 Zus.). Dieser Theil ist für den 
kleinsten Werth von r, nehmlich r = i, der (sf 2)te, 
und dies ist demnach der erste verschwindende Theil 
Der Reihe.

Der letzte von den nicht verschwindenden Theilen 
ist daher der (s f i)te für m f s = n, folglich 
ssxn — m; oder es besteht die Reihe für ZXm(xftw)n 

aus
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aus (n — m f i) Theilen, worin nach und nach die 
Faktoren xn-m. wm; xn Cmt Ü. wmtI u. s. w.; bis 

auf wn vorkommen, also die Potenzen des w von 
xvm bis w° wachsen, diejenigen des x aber von x«* “1 
bis auf x° abnehmen.

§- Z6.
2Lnwendung auf die Differenzialen.

Keiner der bisherigen Schlüsse ist auf einen be- 
sondern Werth von w eingeschränkt, sondern es kann 
dabey w jeden möglichen oder unmöglichen, endli- 
chen oder unendlichen Werth haben.. Will man nun 
z. V. den Lehrsatz §. 22. mit seinen Zusätzen, auf den 
besondern Werth dx für w anwenden; so hat man 
nur noch auf den Vortheil zu achten, daß jede Po­

tenz dx^ gegen die Potenz dx*  verschwindet > sobald 

*>» ist.
Diesem nach gibt der Lehrsatz mit allen seinen Zu­

sätzen die folgenden Formeln, welche in den Vten Ka­
pitel der Eulerschen Differenzialrechnung, theils aufs 
neue erwiesen,/ theils aber wiederum nur aus unvoll­
ständigen Induktionen hergeleitet werden; die aber 
dennoch, wie jede Eulersche Rechnung, sehr lehrreich 
und wichtig bleiben.

§• 37.

Seist man im Lehrsätze w == dx und t = o; oder 
int §. 23. nur w = dx so erhält man daraus, 

,d‘n. xn =. *).
t l 

*) Der Punkt (.) nach d, d'/ dJ.. t dn fordert das Diffe- 
tenzial der ganzen nach dem Punkte folgende Größe, Em 

-ler s
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* •+ | -b

n mag seyn was für eine Größe es will, wie im Bi- 
nominalsatze.

1) In so fern nun jede höhere Potenz dxm^; 

dxm^2 u. s. w. gegen die niedere Potenz dx>" ver­

schwindet, in so fern besteht jedes mte Differenzial 
der Potenz x», n mag seyn was es will,- nur aus ei­

nem

lers Diff. 1 Theil. §. 146. also bedeutet dm. x» so viel 
als dm. (x«), mithin etwas sanz anders als dm x-” 
(dmx)n.
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nem Theile, dessen Factor dxm ist, und dessen übrige 
Factoren alle endlich sind. '

Der erste Factor, ncmlich die Reihe.
1. mm—>«A (m—l)m f "'B (m—2)m... —m)>".
bricht wegen des Factors (m—m)m noch um ein Glied 
eher ab, als es wegen der binomischen Coeffizienten 
geschehen würde, wodurch erst die (m-^i)ten, (mf2)teit, 

ti t»
d. i. die Glieder; mit , m9)? u. s. w. verschwin­
den; und der Werth dieses ersten Factors ist
= m.m—i .... 2.i, (nach§. 8.wenn-2 m;g--rm und 
a = i gesetzt wird) ; daher d,n. xn = m.m—1....2.1, 

dxm also auch = n.n — I . ... [n—(m — j)J# 
™ n.n — I.... n—(m— 1)

xn-m . dxlti, well "M =-------------------------- ---------- - ist,
• I* '£♦♦♦♦ n

2) Wofern man aber auf die Glieder mit den? 
höhern Potenzen von dx Rücksicht nimmt; so ist es 
ausgemacht, daß die angegebene Reihe für dia . x« 
ins Unendliche fortgeht, wenn n keine ganze und po­
sitive Zahl ist §, 29.

3) Ist aber n eine ganze und positive Zahl, so ist

1) wenn m>n ist, jedes dm.x"=o. §. 31, folglich 
z. B. dn^x . xa = o; dn^3 . xn c= o u. s. w.

2) Wenn m = n ist, so hat man nach §. 32.
dn. xn = n. n — 1.... 2.1. dxn (Eulers Diff. 1 Th. §. 154.) 
und dieser Werth ist constant, man sehe §. 33. u. 34.

3) Ist endlich m<n, so besteht die Reihe für dm. 
x«, aus (n — mfi) Theilen, und diese enthalten 
nach und nach dxm; dxmfi u. s. w. endlich "dx1^ 
§» 35.

38.
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Die

xn
X« 

X» 

X“

dx3 

xn 7

n—3

§♦ 38»

Setzt man in der Formel
dln . xn = n . n — [n — (m—-1) . ] . x" -m . dxm 
nach und nach für m; 1, 2, Z, 4 tl. s. w. so erhält 
man sogleich
d
ds
d3
d4

n x n—* . Jx
n . n—1 . x”—3 .
n . n—I . n—2 . 
n . n—i . n—2 , 

u. s. w.
wie Euler in seiner Diff. i Th. tz. 152. aus andern 
Gründen findet. — Anfänger die sich der deutschen 
Ausgabe von Euler bedienen, erinnere ich, die übel 
gedruckten d . 3xn, d . 4x“ ; d . sx« u. s. w. nicht 
für etwas anderes als d3 . xn, d4 . x° ; d*  . x»;
u. s. w., zu halten

n.n —kann ich auch so schreiben 
I, n ♦ nr I..... [n —— (m — 1) J 
wird die 1 mitgezahlt, so sind hier (m-fi) Factoren 
welches die (m —1) anzeigt. m=o gesetzt, kann also 
wohl nichts anders heißen, als es ist nur ein Factor 
nemlich 1 vorhanden, mithin ist richtig 
d° . xn = 1 . xn_0 . dx° e= x11 ; und d° ist nicht 
s= 1 denn o ist hier kein Exponent einer Größe son­
dern es kann nichts anders heißen, als es soll kein . 
Differenzial genommen werden: m negativ nehmen, 
hat hier keinen Sinn, n darf wie hekannt negativ 
seyn, auch sonst was es will.

. dx7
xn-”* . dx*

7
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Die Formel
dn , x« =3 n . n — I.'. 2 . I . dxn=i . 2 . Z ... n. dx» 
giebt wenn man für n, nach u.nach setzt, o, i, 2, 3, 4 

rr. s. w. folgende Formeln
d° ♦ x° = d° . I c= o ♦ dx° = O . 1 = 0, 

Man! schließe hieraus ja nicht d° --- 0, denn d° ist 

nur ein Operationszeichew
d ♦ x == dx
d*  . x’ = 2dx®
d3 ♦ x5 0 6dx3

U. s. W.

§» 39.

Roch einige Relationen und Hauptsätze.
Das allgemeine Gesetz in dem folgenden Schema
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wonach jedes beliebige (t-j-i)te Glied einer jeden 
(mfi)ten Differenzenreihe aus dem (t f 2)ten Gliede 
der nächst vorhergehenden mten Differenzenreihe ent­

steht , wird durch die Gleichung
t tfi t

A01*1 y = A1*1 y — Am X 
oder

Amti 1 (tfi) = Am 1 (tfs) — Am ? (tfi) 
dargestellt- Dies Gesetz umfaßt auch die nemliche 
Entstehung der ersten Differenzenreihe aus der Haupt­
reihe, wenn man sich erlaubt, statt m und t auch o 
zu schreiben, d. i. beyde Größen ganz wegzulassen. 
Denn wie schon oben erinnert worden, daß 
keine Größe, sondern nur ein Operationszeichen be­
deutet, daß die mte Differenz bezeichnet, so sagt 
oder die ote Differenz nichts anders als es soll gar 
keine Differenz genommen werden, also ist es ganz 

gleichgültig ob ich a° y oder bloß y schreibe, y deu­
tet wie bekannt das (tfi)te der Hauptreihe an, hier- 

o
nach ist also y = y nichts anders als das erste Glied 
der Hauptreihe. Man merke sich also das o Hey a° 

o
und y nicht ganz einerley sagt, auch daß beyder Be­
deutung von o als Exponent einer Potenz ganz ver­
schieden ist, denn im letzter» Fall ist a° allemal t= 1.

R 9 40.
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§. 40.

Anmerkung.
Aus diesem Entstehungsgesetze folgt sogleich, daß

ö- B. Z) Am 7 = Am 7 t Amt* y
2 I I

2) Am y y f AmtI y
tfi t t

überhaupt K) Am X = Am X t Am*h  y ist. 
(Vergl. S. 169 .No. z.)

§• 4«-
Betrachtet man die Gleichung §); so ist darin

1
der Werth von Am 7 durch lauter erste Glieder der 
Differenzenreihen ausgedrückt, denn es kommt in ihm

i 2
nur y und kein y, y u. s. w. vor.

2
Der Werth von Am 7 hingegen bestehet aus zwey

1
Theilen, wovon jeder schon y enthält. Indessen ist 
der Werth des ersten Theiles schon bey L) durch lau­
ter erste Glieder ausgedrückt; und da man in dieser 

mmlichen Gleichung statt m auch mfi schreiben darf, 
indem hier m jede positive Zahl bedeuten soll; so giebt 

sie zugleich Amti y == Y f Amt3 7, welches 
auch den zweyten Theil in L) durch lauter vorange­
hende Glieder ausdrücken lehrt; so daß man schrei­

ben kann

Am
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t y f /\mf2

e

Der

-t*

▻ 
Z

•4« *
3

S X 
4« •+ 
: ®

er

5

7?
1F 
▻

5

§. 4-- 
h r s a ß.

2
<?) Am y = Am y

L
Ueberhaupt ist

*+
s i>
5 
•+
3

a
Am y = Am 7 t A™* 1 7 t Amti y f A™'!'3 y 

oder

—t*  —i-

D> -b l> 
,**.  3 r. 3

►+ M <+• u . i» 

t? M £> ^ 
<-b H*  —t*
~3 • " *

worin m und t jede positive ganze Zahl, und (nach
15.) auch =a o seyn kann.
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§* 43.

Beweis.

Angenommen/ es sey für irgend einen bestimm­
ten Werth von t, welcher a heißen mag, der Lehrsatz 
wahr, also

a m4i nrf-2
Amy = i. Amyta3l. A yt^.A y f 
so wird damit zugleich auch angenommen, daß auch 

mtl a . mfi , ,, , mf2
A y= i.A yta$*A  y s- ....
sey; weil m im Lehrsätze jede ganze positive Zahl, 

. also auch mf i bedeuten soll. Diese beyden Gleichun­
gen zu einander addirt, ihre linken Seiten, (nach 
§. 40.), ihre rechten, (nach H. 18. Beweis) geben die 
Gleichung

den zu dem (n-j-i)ten Gliede der obern Reihe das 
(n—A)te der untern addirt giebt.

-R Amtn / t «Amt"y = (*» 1’

=a^1 N . a’"+I' X (§- >8- Beweis).
Vergleicht man nun die Reihe für y mit dem 

Lehrsätze, so folgt daß der Lehrsatz auch für t = a-fi 
gelten müsse, so bald er für t --- a als gültig ange­

nommen werden kann. 1
Nun gilt aber der Lehrsatz für t = 1, nach 8) 

§. 40. auch schon für t = 2, nach <A) §*  41. Folg­
lich gilt er nach den eben angeführten Schlüssen auch 
für t = 2 f 1 s= 3; folglich durch wiederholte An­
wendung dieser Schlüsse auch für t ==3 3 f 1 = 4'u. s. w. 
für jede positive ganze Zahl,
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§- 43-

Zusatz, i.
Setzt man im Lehrsätze (§♦ 42.) t = 0, so wird 

t
X zu y oder deutet das erste Glied an, und da für 
r --- 0 alle folgende Binomialcoeffizienten
u. f. ti). = o werden; (den die ote Potenz einer zweyr 
theiligen Größe ist --- 1, hat also gar keine Bino- 
mialcoefficienten, eben dies sagen die Darstellungen

u. s. w.) so giebt der Lehrsatz bey diesem 
Werthe von t daß Am X = 1 Am y f o, welches 

freylich schon von selbst klar ist und nicht anders seyn
t

kann. Der Lehrsatz bestimmt nemlich Am y aus den 
ersten Gliedern der Reihe Am und der folgenden Rei- 

m+i m+2
hen i)er A , <A u. s. w. Wählt man nun zu 

t s
A,n y selbst das erste Glied der Reihe der Am, so 
kann der Lehrsatz nichts anders angeben, als daß dies 
Glied durch sich selbst allein bestimmt werde«

§• 44-

Z u s atz. 2.

Man setze im Lehrsätze (§. 42.) m == 2 so hat man

Aa r = 1. A*  y f A*  y f A*y  f ... f . ZX^y,

Man setze m = 1; so hat man

A1 y =1 ♦ & y t MA'y t A'y t... A1 ^y. 

und
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und in dem Sinne des §. 15. m = o gesetzt, giebt,

Am y = A° y =

y = i.y'ft^A y t y
das ist:

Anm. Der Lehrsatz (§. 42.); ' giebt also das allgemeine 
Glied jeder Reihe der Unterschiede, durch erste Glieder 
der Differen;reihen ausgedrückt Die Reihe für y, giebt 
das allgemeine Glied der Hauptreihe, durch die ersten 
Glieder, der Hauptreihe und der Differenzreihen, aus­
gedrückt. 2« beyden Reihen §. 42 u. 44. sind die 
(t — i)ten und (t)ten, zum Exponenten t gehörigen

—1
Binominalcoeffizianten t$=>ta‘8/ tj s 1, daß 
also diese Reihen, vorwärts und rückwärts geschrieben, 
einerley Viuominalcoeffizienten haben.

r
Setzt man in der Reihe für y; t = n, so kommt 

n
die Reihe y, wie bey Kastner Anal. enhl, Gr. §. 725. II.

§- 45-
Reihen der riten Ordnung und ihre Glieder.

Die bewiesenen Sätze gelten, was auch y für ei­
ne Funktion einer veränderlichen Größe ist, und nach 

0 13
welchem Gesetze auch die Hauptreihe y, 7, y . . . 
sortgehen mag. Hierbey schreiten im Allgemeinen die 
Differenzreihen, wenn die Gliederzahl der Hauptreihe 
nicht beschrankt ist, ohne Ende fort. Es giebt aber 
mehrere Reihen (Kästn. Anal/ endl. Gr. §. zio.- 
312. §. 727, u. a.) deren Differenzen irgend einmal 
abbrechen, d. i. deren iste, 2te, zte.... oder nte 
Differenzen c 0 n ft ant sind. Man nennt sie Reihen 

der
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der iften, 2ten, gten.... nten Ordnung (Culers Diff. 
ister Theil §. 37.) und sollen hier durch 
ty, ay, 3y . ♦ ♦ ny bezeichnet werden.

Will man die folgenden Formeln mit denen m 
Eulers Differenzialrechnung ister Theil, 2tes Kap. 
vergleichen, so hat man nur noch zu merken, daß Eu­
ter x geschrieben hat, wo hier t steht.

§♦ 46.
Aufgabe.

Das allgemeine (tfi)te Glied einer Rei­
he der nten Ordnung, als Grundreihe, durch 
die ersten Glieder, derselben Reihe und ih­
rer Differenzreihen, auszudrücken.

Auflösung.
Es ist

t
ny =ai.y f ^A’y f t55ZX3y tA’yi.. y.
das ist:

nyl (tti)=y7i f t$lZV*h  f t‘ß ZVIr...
Diese Reihe erhalt man, wenn man die Reihe

§. 44. bis auf An oder die nte Differenzreihe, fort- 
setzt, mit welcher sie abbricht (§. 45«)« Für eine
Grundreihe der (ntm)ten Ordnung, oder für/ ,

/ nym7'

•hh 
müßte man die Reihe bis auf das Glied M y 

also für n^y bis auf M y fortsetzen.

47*
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§- 47-
Aufgabe.'

Das allgemeine (r f i) t e Glied einer Rei­
he der erster« Ordnung, aus lauter Glie­
dern der Hauptreihe auszudrücken.

Auflösung.
Nach Z. 46. ist

t7 = ty 1 (tfi) = 1 . y f ‘21 . & y,
also weil =3 t, und nach §. 39. ferner

1
■ ;r/V y = y - y ist,

t I
auch ty = 1 . y t ‘31 y - t.y

t
oder xy E= y  (t—1) y. Diese Gleichung, wel­
che übrigens der Aufgabe säM Gnüge leistet, kann 
offenbar auch folgendermaßen geschrieben werden: , 

(_L-z)

§. 48.

Aufgabe.
Das allgemeine Glied einer Grundrei- 

hc der nte« Ordnung, aus lauter Gliedern 
derselben Reihe auszudrü cken.

A tt ft
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Auslosung.
Es ist

Beweis.

Nach §. 46. ist
t,
y = iM.y t t^Aty t A1 y... f M A«y => F n

t if
und n|Ty es F f *01./^ ”+’.y --------------- F f G.

Die Buchstaben e, f, g, sollen nehmlich nur dazu 
dienen, einige der hergeschriebnen Größen ganz kurz 
zu bezeichnen.

Schreibt man den Werth, wie ihn §. i8. für 
2\n+Iy bestimmt, in G; so hat man G = 
+i n+i n +i n+i—(ln-f-l) +i
tMsi. y —"*̂Ay.y ...-ls>^iN.y.)

Angenommen nun, es sey für firgend einen be­
stimmten Werth L von n die f = e; so hat man 
wegen der vorletzten Gleichung wonach überhaupt

ntly = Ff G ist, daß für n = a sey p+ly=EfG 

rlnd res kommt darauf an, hie Summe der beyden 
Reihen e und G zu finden.

n—m n4i-—(mti)
Weil y = y ist; so schmilzt bey ihrer 

Summirung Zusammen jedes (m f i)te Glied von e, 

so 
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so e heißen soll, mit jedem (m f 2)ten Gliede von G, 
welches g heißen mag.

Wenn man nun das Glied e durch
(t — n — i) (m t i) (n -f i), 

das Glied g aber durch (t — n — i) (t — n ch m) 
sowohl multiplizirt als auch dividirt; so hat man

n—in

. -L-\ 
n'i’ I x t—n—I m'f'i t—nf my

■Vi
e fg = M. (t—n—i).

und da

t—n—i

. e f g c= M. (t— n—“t1 M.-------- ------
X t — n f my

- Dieser Werth von efg giebt nun gerade das (mf2)te 
Glied an, so man in der Reihe des Lehrsatzes erhal­
ten würde, wenn man darin n f i Statt n schriebe.

Für

*) Wer die Formel nicht so allgemein zu übersehen ver­
mag, der kann erst die obern Zeichen und f und dann 
die untern f und — gelten lassen, so findet er für den 
ersten Fall f i und für den 2ten Fall — ^ttt 
aber wohl sich an dergleichen allgemeine Uebersichten zu 
gewöhnen, da sie die Beweise und Satze ungemein ab­
kürzen.t
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Für m = otoitb in e, der Coeffizient
+1

und in g, der Coeffizient ±.n-f,ISR = — und 
es schmilzt alsdann, nach der eben ausgeführten all­
gemeinen Reduktion das erste Glied der E mit dem 
aten Gliede der 0 dergestalt zusammen, daß

n
M . (t — n — I). (— °^--A.—

v t — ny

daraus entsteht. Dies wäre aber ebenfalls das ate 
Glied in der Reihe des Lehrsatzes, wenn man darin 
n 11 Statt n schriebe. Denn t — (nfi) ist « 
—I u. s. w.

Was nun noch das erste Glied der Reihe G be- 
nri

trift, so ist dies M. y folglich auch /
n+i

-- M.(t—n-i).(—i—y

— n — yZ
welches ebenfalls das erste Glied in der Reihe des 
Lehrsatzes ist, wenn man in demselben n f 1 statt n 
schreibt.

Bedenkt man endlich noch, daß die Reihe 6 nach 
meiner Ausgabe von Eulers Algebra §. 361. 3. Zus. 
gerade mit dem (n 12)ten und E mit -dem (n f i)ten

Glie-

**) Nemlich, da "M, der mte Binomialcoeffizient der 
Potenz n andeutet, so bedeutet m = O/ nichts anders 
als der ote Binomialcoeffizient, d. h. der nächstvorherge- 
hende Coeffizient, der vor den als ersten gezahlten stehet, 
und dieser ist wie bekannt immer = f 1. Man über­
ragt sich davon auch so: der mte Binomialcoeffizient/ ge# 
Hort zum (m f 1) Gliede, der ote muß also zum isten 
Gliede gehören, und ist also = 1.
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Gliede abbricht; so ist man völlig überzeugt, daß 
E t g gerade diejenige Reihe giebt, so man im Lehr­
sätze erhalten würde, wenn man darin n f i statt n 
schriebe; der Lehrsatz also für n = a f i gelten 
müßte, wenn er für n n als richtig dürfte ange­
nommen werden. Das darf aber nach §. 23; gesche­
hen für a = 1. Also gilt der Lehrsatz auch für 
n = 1 f 1 c= 2; also auch für n == 2 f 1 = o 
s. w. für jede Reihe der nten Ordnung, wenn n nur 
die positiven Ordnungszahlen bedeutet.

Amn. dre Zahl n welche bestimmt, zu welcher Ordnung 
die Reihe gehört, ist in 46. und in -. 43. nur dem 
t
y beygeschrieben worden, weil es sich von selbst versteht, 

v daß die y und ihre Differenzen, die in dem Werthe 
r

von ny vorkommen, zu derselben Reihe derselben Ord­
nung gehören.

Summatorische Reihe und derselben allge­
meines Glied.

§- 49-
' Das Abziehen jedes Gliedes vorn nächftfolgenr 

den, giebt Differenzreihen: das Addiren des 
ersten Gliedes zum zweyten, des dritten zur beyder 
Summe u. s. w. des jedesmal nächstfolgenden zur 
Summe aller vorhergehenden, summatorische Reihen.

o 1 a 3
Ist also y, y, y, y . . » * wieder die Hauptreihe, und 

oia;
schreibt man eine andere Reihe /,/-/-/..,. neben 

o
ihr zur Seite, so, daß /oder/--- 0;

X
' /»
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IO [o
/ s= y f o = y
3 10

/ = y t y
3 a 1 O $
/ = y t y t y
43210
/ = y t y t y t y

§ *

t—T t —Ä t—Z 2 10
/ = y t y t ♦ ♦ ♦ y t y t y
t t-3 t-2 3 2 10
/ ay ty T-4ytyfyfy; 

0133 t
so ist/,/,/- /.... / die sum motorische Reihe 
(Series fummatrix)) der Hauptrcihe, und der Werth

t
von/heißt das summatorische Glied (Terminus 
fummatorius) 'der Hauptreihe (Eulers Dlff. ister 
Theil. §. 53. - 56.)

Der summatorischen Reihe allgemeinesGlied 
«012 t—• r—r
/ = y t y t y....f y t y

ist also mit dem summatorischen Gliede der Haupts­
reihe einerley; daher sich die Erfindung des summa- 
torischen Gliedes auf jene eines allgemeinen bringen 
laßt (Eulers Diff. ister» Th. §♦ 53-)

§• 5°- 
Aufgabe.

Das summatorische Glied der Hauptrei- 
he, durch die ersten Glieder der Hauptreihe, 
und der Differenzreihen, auszudrücken.
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Auflösung.
Es ist

/ = y f tY^'y t ^A’y. f 
d. i.

t^ly f f ... -j-

Beweis.

Aus §. 49. ist deutlich daß
ait

2 a a
/-/ = y

t t—1 t—1
s — s = y

Man kann yehmlich die Hauptreihe als erste Dif­
ferenzreihe der summatorischen und diese letztere als» 
als eine gegebene Grundreihe betrachten, (Eulers 
Diff. 1. Th. §. 55») hieraus folgt, daß die ifte, 2te, 
gte u. f. w. Differenzreihe der Hauptreihe, als die 
2te, Zte, 4te u. f.: w. überhaupt die nte Differenzrei­
he der Hauptreihe, als die (n f i)te der summatori­
schen Reihe betrachtet werden kann.

Da nun aus §. 44. bekannt ist, daß:
t —1
y---i.yI-tA.A'ybW.A'y....-!"TA^y1-tT^ y 

so ist offenbar

/=i./.t/SL y "HS.ZVyA^’y!*£ A4*1/ 
denn
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denn man schreibt in der Reihe für y, statt y, ATy, Aay 
u. s. w., nur die entsprechenden Glieder der nächst 
vorhergehenden Differenzreihen.

Z. V. y, ZVy, A^y.... A‘y, sind die ersten 
Glieder der Hauptreihc, und deren iste, 2te, Zte.... 
tte Differenzreihen, aber auch

/, y A1 y, Aa y . . . &.t-Iy, 
sind die ersten Glieder von Reihen, die jenen nächst 
vorhergehen.

0
. Da / 0, so fällt solches aus der Reihe für j*

ganz weg.

§- 5i-
Man kann zu der summatorischen Reihe als ei­

ner Grundreihe, eine neue summatorische, und zu die­
ser wieder eine andere suchen, und dies verfahren so 
weit verfolgen, als man will. Dies ist der Fall bey 
den sogenannten figurirten Zahlen, aller Art 
und Ordnungen: der Triangulär-Tetragonal-Penta- 
gonal u. s. iv. überhaupt Polngonalzahlen; der drey, 
vier, fünf und mehrseitigen Kyramidalzahlen. Hier- 
bey kann man die Glieder Awschiedentlich zählen. 
Zählt man sie (wie in §. 50.) sö, wie jedes nte Glied 
der summatorischen Reihe aus der Summe von n—1 
Gliedern der vorhergehenden (als Grundreihe) er­
wächst: so giebt das eine Schema für figurirte Zah­
len, so wie. das Kästnerische (Anal. endl. Gr. §. 727. 
S. 515- d. n. A.). Nimmt man aber die Summe des 
ersten und zweyten Gliedes der vorangehenden Reihe 

O als
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als das zweyte Glied der summatorischen, die Sum­
me der drey ersten Glieder jener Reihe als das dritte 
dieser; setzt mqn überhaupt das nte Glied der sum­
matorischen aus der Summe der n ersten Glieder der 
nächst vorhergehenden Reihe zusammen: so kommt 
daraus die verkürzte Darstellung der figurirten 
Zahlen, wie in (Hind. Infin. Dign. 8. 162 - 165,)

0X3
Fuhrt die Hauptreihe y, y, y . . . auf beständi­

ge Differerzen, so kommen, und zwar eben dieselben, 
auch bey der summatorischen vor; und wenn die 
Hauptreihe zur nten Ordnung gehört, so gehört die 
summatorische zur (nfi)ten (Eu l. Diff. 1 Th. §. 55.) 
Dafür kann man hier das Zeichen , / in ähnlicher

' rrpi

Bedeutung, wie in §. 45. gebrauchen.

§• 5-- 
Aufgabe.

Das allgemeine Glied einer summatori­
schen Reihe der (nf i)ten Ordnung, durch 
die ersten Glieder, der zugehörigen Grund­
reihe (von der Ordnung n) und ihrer Diffe- 
renzreihen, auszudrücken.

Auflösung.
Es ist

y r t^ZV y.„tt^ZX01
das ist:

nfi
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Beweis..
Da die Hauptreihe (Grundreihe) zur nt<n Ord­

nung gehört, so sind ihre nten Differenzen die letzten. 
Da nun eben diese nten Differenzen die (n*i)ten  der 
summaeorischen Reihe sind, so lasse man die Z. 50,

für s gegebene Reihe mit dem j Gliede M . A" y ab- 
brechen, alsdann erhalt man, (da das erste Glied

1 . / sa o ist) die in der Auflösung gegebene Reihe.
ö

hinausgehen; früher aber kann sie allerdings abbre- 
chen, nemlich wenn t<nfi ist, nach meiner Ansg. 
von Eulers Alg. ifter Th. S. 203. 3. Zus.

Formel für die Summe einer geometrischen Reihe.

Nutzanwendungen der bisherigen Lehren mache 
ich nicht, weil im Eulerschen Werke daran kein Man­
gel ist, nur sey es mir erlaubt, für Anfänger noch 
eine Anwendung des summatorischen Gliedes, auf 
die Summirung der geometrischen Reihe, hinzuzu- 
fügen.

In §. iz. sey y = a.e*  und w == 1; so wird 
die dortige Hauptreihe eine geometrische/ und x = o 
gesetzt, erhält man für die

O 2 Haupt-
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I a 3 n

Hauptreihe y, y, y, y ♦ ♦ ♦ ♦ ♦ y
die folgende ae0^1, ae2, ae3 . . . . aen,

also die allgemeine Form der geometrischen Reihe, 
die vom ersten Gliede ae° = a ajifanat; und man 

findet dafür
Ary = are — i)*
A2y = a(e — i)3
A’y = a(e — i)*

u. s. w.
überhauptA^y = a(e — i)n
Aus lauter solchen ersten Gliedern der DiffereNzres- 
hen wird, nach §. 50» das summatorische Glied 

n/= »Ay t "B^y t "CA2y.... »NA^^ y
also für die geometrische Reihe die Summe von n 

Gliedern
z= «A.a^"B.a(6—i)It”S^a(e—i)2... .ff"N.a(e—l)n*1 
se . (e—iytn@. (e—i)2,.. .ff»N , (e—1)°- x]

= F
diese Formel F die man für die Summe einer jeden 
geometrischen Reihe durch Hülfe der allgemeinen 
Differenzen gefunden hat,' bestimmt auch für e = 1 

sogleich den Werth
an3l = an

da hingegen, die aus den Anfangsgründen der Alge­

bra bekannten Formel
en— 1

(m. A. v.Eulers Algebra, ifterTheil S. 189. §.514, dort 

ist b =a e)
fuv e = 1, a. § giebt. Der Ausdrück § ist ein un­
bestimmter Ausdruck; a,Z sagt also, daß die Formel
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für 8 in diesem Fall nichts bestimmen könne; doch 

nennt man die Formel allgemein, weil sie die Sum­
me aus einem beliebigen ersten Gliede a, einem be­
liebigen Exponenten e und der beliebigen Gliederzahl 

n zu bestimmen schemt.

Daß eine Formel £ wird, ist eine Erscheinung, 
die bey algebraischen Formeln nicht selten find, und 
der Formel für s sieht man es freilich bey genauer 
Achtsamkeit bald an, daß sie 'für e = i nichts be­
stimmen könne. Denn in diesem Falle wird en — er 
kann also für die Summe von r Gliedern nichts an­
ders angegeben, als für die Summe von n Gliedern. 
Da nun gleichwohl der Unterschied zwischen diesen 
beiden Summen, indem man außer r und n auch a 
beliebig verändern darf, eine jede beliebige Größe er­
halten kann; so muß freylich die Formel für e = i 
so etwas angeben, was man jeder beliebigen Größe 
gleich setzen darf, das heißt, sie muß einen Ausdruck 
geben, der gar nichts bestimmt.

Aus der Formel F kann man auch die für 8 ab­

leiten:
Es ist nemlich

F auch =a.---------- ----------------7 _ ■------------------------

folglich -a? 7 fG —- folglich auch
1 6 --- I

e — I
Betrachtet man die eben vorgenommene Umbil­

dung der 5 in 8; so sieht man, daß dabey durch 
e—i 
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t — i multiplicirt und dividier würde, in dieser 
Hinsicht also

8 = F.----- - sey
e — I

Dann muß freylich für s -- i die 8 geben a. 5, 
wenn gleich F einen ganz bestimmten Werth angiebt. 
Diese Umbildung belehrt uns aber deutlich, warum 
die 8 nichts bestimmen konnte.

<^Auch die Kunstgriffe, wodurch die 8 gewöhnlich 
herausgelockt wird, sind auch so beschaffen, daß sie 
für den Exponenten = i schlechterdings nicht zum 
Zwecke führen können. Denn man setze nur in den 
Schlüssen (m. A. v. Eulers Alg. i. Th. S.289.) sogleich 
den Exponenten --- 1: was kann man hoffen dadurch 
zu finden, daß man s von i.S abzieht?

Freylich ist es hier sehr leicht für den Fall wenn 
e = 1 ben Werth von 8 zu finden, denn alsdann ist 
jedes Glied der geometrischen Reihe gleich dem ersten 
Gliede a, dieses ist daher so oft zu sich selbst zu 
addiren als die Gliederzahl n anzeigt, mithin fin­
det man 8 = a.n.

Sonst pflegen die Algebraiften sich bey solchem 
Ausfalle einer allgemeinen Formel durch Substitution 

eil — j
zu helfen, Setzt man in 8 es a.---------- ; e = if z,

e — 1
so erhalt man

z

Wenn
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Wenn nun e — i ist, so muß da e = if z; z=ofepn. 
für z = o findet sich nun aus der eben gesundem» 
Formel

S = a.^ = a.n. und so ist die Summe der geo- 
metrischen Reihe für e 0 1 ganz richtig bestimmt.

Mit Recht aber kann man nun fragen, woher 
kömmt es, daß:die Formel nach solcher Substitution den 
Werth bestimmen kann? Wenn ich erst e = 1 f z 
setze, und dann wieder z = o, wie kann das etwas 
anders geben, als wenn ick gleich e = 1 setze?

Man achte genau auf die Art und Ordnung, wie 
man das z gebraucht und verschwinden laßt, so be­
merkt man wohl, daß es die Stelle eines Differenz 
zials vertreten muß, und e dabey als eine verändert 
liche Größe betrachtet wird, die sich der 1 ohne Ende 
nähert. Die angegebene Formel bestimmt nemlich die 
Summe einer jeden geometrischen Reihe, so lange e 
auch um irgend eine Größe von 1 verschieden ist. 
Diese Größe heiße z, und es werde nun 1 f z in 
die Formel statt e gesetzt; so ist ihr letzter Ausdruck 
bey(<?) so beschaffen, daß man daraus das Gesetz ab­
nehmen kann, wornach sich ihr Werth dem Werthe 
der Summe für e <=□ 1 ohne Ende nähert, indem man 
z ohne Ende kleiner und kleiner werden läßt. Wenn 
aber das geschiehet, so nähert sich der letzte Ausdruck 
ohne Ende dem --- an, oder um kurz zu reden, die 
unendlich kleinen Größen »Bz u. s. w. müssen neben 
der endlichen Größe an verschwinden. In dieser 
Hinsicht kann man nunmehr z = 0 setzen, nachdem 
man nehmlich, vermittelst des z, den Werth der letz­

ten Verhältniß von ———, indem sich e der 1 ohne 
e — I

Ende
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Ende nähert, deutlich erkannt hat. Wer aber auf 
diesen Sinn nicht achtet, und nachdem er anfangs 
e = i f z gesetzt hatte, dann wieder, wo es ihm 
zuerst einfiele, z = o setzen wollte, der würde ent­
weder durch ein bloßes Ohngefahr zu seinem Zwecke 
gelangen, oder ihn auch wohl ungeachtet dieser Sub­
stitution gänzlich verfehlen. Z. B. wenn man etwa 
in A wieder z = o setzen wollte, so hatte man wie­
der das alte = a.£. Denn man darf z nicht neben 
i — i, welches keine endliche Größe, sondern o ist, 
verschwinden lassen; wenn z nicht bloß wie o, son­
dern wie eine dem o sich ohn Ende nähernde Größe, 
wirken soll.

Vergleicht man diese Formel, worin z stehet, 
mit der aus dem summatorischen Gliede abgeleiteten, 
so wird man sogleich einsehen daß beyde Formeln 
vollkommen identisch sind, indem in der abgeleiteten 
statt z, sein gleiches e — i stehet.

Einige merkwürdige Sätze und 
Relationen.

I.

Es ist
nn n f I . n ch I.... 2N —' I / 2nA " an — iI . 3-

Beweis.
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Beweis,

2
1
5.4

1-3
4-5-6

2
I-3-5

1-3-5.7
diese 4 conftuirten Glieder stellen das Gesetz so deut­
lich vor Augen, daß man ohne Schwierigkeit

n t I.n t 2....2n - 1. 211
2n — 1

conftuirt. Um die Allgemeinheit des Gesetzes barzu­
thun muß bewiesen werden, daß wenn das beobach­
tete Gesetz für 2» richtig ist, daß es auch für 2n+x 

gilt.
Das beobachtete Gesetz giebt.

n ’i’ 2 .... 2N — i.an . an fI.2(n f i)
1.3 .... 2n — 3.2n — 1,2n f i

Es ist aber 2n+*  = 2».2.
Können wir nun beweisen, daß der nach obigem Ge­
setz gebildete Ausdruck für 2”, doppelt genommen, 
den Ausdruck für 2n+r giebt, so ist die Allgemeinheit 
des beobachteten Gesetzes mit aller Evidenz erwiesen. 

Nun ist offenbar 

dieses letztere giebt aber gerade den für 2«. 2=2”** 
gefundenen Ausdruck, da wir nun gewiß sind daß 
das Gesetz für n — 4 gültig ist, so gilt es nack dem
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2112.4

3*

Es ist

erwiesenen auch für nfis=5, also auch für 5fie=6 
u. s. w., d. h. es gilt allgemein.

2.4.6.8.... 2»,

2.

Es ist -°N = . a„

Beweis.

Es ist aus (1) bekannt, daß 
nfi.n + 2....2n , 2n = —---------1------------------ . ist.
I . 3 ....211—1

Daher ist auch
1.2 ... . 2N—I n-f-r . nf 2 .. * ♦ 2n

3 ---- . 211 E= — ------------------------  —
1.2.... n I . 2 .... n
(bekanntlich ist 2n — 1 die nte Ungeradezahl, also 
sind hier im Zähler eben so viele Glieder als im 
Nenner, d. h. es sind n Glieder j sowohl im Zähler 

als im Nenner).
1.2.... 211 — i—2---------------- . oan —-----  .2n ss r«N ist

2n
W. Z. E. W.

Beweis.
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68 H

• s B
H
x^ X

-4- •+S -b s •4-
W SS
's 5 *S

<3 (24
x, x x^ X^
-b •+ -b -b

B 
(S?

B
SS

3 | S ! 3sal
X X X

—fr» —v

auch ist
i-j-riHmAx'j'n-^mCx'... B+®SRxr

Wir entwickeln hier sowohl vom Produkte, als 
auch von (1 f x)n+°*  nur r f 1 Glieder (das erste 
mitgezahlt); denn sonst sind hier wenn n und m 
ganze Zahlen sind, im Produkte sowohl als in 
(11x)ntm; jj Glieder vorhanden, die aber
hier zu entwickeln nicht nöthig sind, indem die obi-

" gen
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gen schon deutlich das Gesetz des Fortgangs vor Äu- 

gen legen. Vergleicht man nun das Produkt mit 
der Reihe für (i t x)«+m, so ergeben sich nach be- 
kannten Lehren, folgende fruchtbare Relationen 

n-s-mU = i.mU f »A.i

»l-mB = i.mB t t «B.e
n|mg — i.mC n$11193 »B^A f «C.I
v^-mD = i.-wDch »A'^C t "B^B f «C^A f »D.I

u. s. w.
wo man also für den oben angegebenen Werth 
findet.

Ehe ich weitere Folgerungen mache, will ich fok 
gende nützliche Betrachtung hinzufügen. Wir können 
manche Untersuchungen und manchen langwierigen 
Calcul, dadurch ungemein abkürzen, wenn wir über­
legen, daß die analytischen Operationen, 
nur die Form des zu suchenden aus der 
Form des Gegebenen bestimmen, die Grö­
ße n a b e r u n b e ft i m m t lassen.

Diese wirklich höchst wichtige philosophisch^ Be­
merkung, verdanken wir, wenigstens so bestimmt aus­
gedrückt unsern gelehrten Hrn. Pros. Kugel. Ich 
werde gleich zeigen wie wir hier davon eine sehr 
gute Anwendung machen können.

Das (r f i)te Glied von (i t x)n*111 oder 
(I ch ,x)n+m 1 (r i) ist = »+m§Rxr; das (i f x)m. 
(i f x)n 1 (r f i), welches mit nfm9Lxr identisch seyn 
soll, muß also aus lauter partial Produkte die xr 
enthalten bestehen. Diese partial Produkte, entstehen 
nini aus zwey Glieder, deren das eine aus der Rei­
he (i t x)m/ das andere aus der Reihe (i f x>

' ge-
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genommen ist; die Exponenten der xen worin diese 
Glieder multiplizirt sind, müssen also zusammen ad- 
dirt immer die Zahl r geben damit ihr Produkt xr 
enthalt, da nun in jeder der in einander zu multi- 
plizirende Reihen diese Eponenten von x (den das 
erste Glied von o angerechnet) die Reihe der natürli­
chen Zahlen ist, so führt diese Betrachtung, auf das 
wichtige Problem

Jede ganze Zahl r aus zwey Zahlen der 
gegebenen Progression o, 1, 2, 3, 4 ....r, 
nicht allein zufammenzusetzen, sondern 
was hiernöthig ist, alle diese mögliche Zu­
sammensetzungen selbst darzuftellen.

Herr Professor Hindenburg hat dieses Problem in 
seinem ganzen Umfange, mit bewundrUngswürdiger 
Leichtigkeit aufgelößt, und hierdurch eigentlich eine 
bisherige Lücke in der Analysis ausgefüllt. Mir sey 
es erlaubt die Auflösung von diesem hier erwähnten 
besondern Fall so zu geben, als ich solche zuerst fand 

ehe ich Hrn. Hindenburgs Verfahren kannte, letzteres 
werde ich weiter unten mittheilen.
Aus der Lehre von den arithmetischen Progressionen 
ist bekannt daß, wenn man unter einer arithmetischen 
Reihe, dieselbe Reihe verkehrt, unterschreibt, so daß 
das letzte Glied unter dem ersten, das vorletzte un­
ter dem 2ten Gliede "vorn Anfänge u. s. w. zu stehen 
kömmt, so sind die Summe der übereinander stehen­
den Glieder unter einander alle gleich, schreibt man 
also

o, 1, 2, 3, . .i.. r — i,r
r, r 1, r—2, r—3 ....... I, o
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so geben jede der zwey übereinanderstehende Zahlen, 
zur Summe r, und das Problem ist aufgelößt.

Wir können also das (i f x)m. (i f x)»1(r f i) 
auf folgende leichte Art ^finden. Man schreibe

(T^x)0 = i t ”$tx t n$xe

darunter
—I —2

(Ifx)in=n,?Xxrtm^xr-1.... f I 
und multiplizire jede zwey übereinanderstehende Glie­
der in einander, so erhält man das gesuchte wie 
oben, denn die Exponenten von den xen machen, die 
oben verkehrt unter einander geschriebenen arithm. 

^^Ich^sagte aus der Form des Gegebenen ist die 

Form des Gesuchten bestimmt, das findet hier fol­
gende Anwendung, t>o p t (r ~~ p) = r geben, so 
multiplizire man

(i f x)n 1 (p f i) = «3J.xP
—?

UNd (i f x)m? (r — (p — I)) --- . xk'P
in einander, so giebt »P.xP.-nRxr-p die Form eines 
reden partialProdukts, woraus n*m9txf bestehet und 
da es uns bey gegenwärtiger Untersuchung nur um 
die Binomialcoeffizienten die in diesen partia.lProduk- 
ten vorkommen zu thun ist, so giebt

->P. «R dazu die allgemeine Form.
Setzen wir nemlich p, nach und nach ---o, l,2,.. .r-—i,r, 

so erhalten wir
—i —t

I.MR -j- MU.MR 1-...."R.«A -k "R.I =5
Aus der allgemeinen Form für n+m0$, findet sich wenn 
man R nach und nach---A, V, C, D u. s. w., setzt, die 

obir 



Merkwürdige Säße und Relationen. 22z
obigen für «W, H*mSz »i'»D u. f. w. gefun­
dene Werthe.

Mann wird denke ich schon jetzt den Vortheil 
den jener Klügelfche Satz, in Abkürzung der hier 
sonst nöthigen Rechnungen bewirkt hat, einsehen, an- 
andern Orten werden noch weit mehr in die Augen 
fallende gegeben werden.

4*
Es ist

r t nr t t »e ft.... 1»
-- r°N-

1.3*5.7«...  (2N — I) _- ...................—... . ...... .
2.4.6.8....... 2H

Beweis.

—1 —1

so ist wenn statt R, N gesetzt wird

■tm9l ss i.mjlt t "A."N .... «N.>nU t n9l .1
—1 —r

da nun »N --- r; »N -- "A, "N = «B u. f. w. 
ist, so hat man auch

»tmgt = i."N f »A.»'N t .... «A."A f 1.1 
setzt man hier m ---- n, so folgt

-»N = i.°N. f °A."N f .... t ”9Tt i.i 
folglich

^°N = i9 f °A9 f --B' t.... «&at ....»rfi*  
W. Z. E. W.
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5.

Anmerkung.
Der merkwürdige Satz in (4) würde, meines 

Wissens zuerst von Lagrange, und zwar zufälliger 
Weise, gefunden. Denn in einer Abhandlung die in 
den Berliner Denkschriften stehet, fand er für eine 
gewisse Wahrscheinlichkeit zuerst den einen, und für 
diese nemliche Wahrscheinlichkeit hernach auch den an­
dern Ausdruck und schloß daraus auf ihre Gleichheit. 
Bemerkt zugleich daß er aber noch keinen analytischen 
Beweis gefunden hätte, der ihm auch ziemlich ver­
steckt zu seyn schien.

6.
Es ist ± '«N — mj-iSR = 

oder welches einerley
—1

Beweis.^

Seite 174 habe ich bewiesen, daß
—-1

rnN t ist
woraus sogleich obige Gleichung folgt.

7-
Es ist

1 — »>A f f ...» +

Beweis.
Setzt man in der 2ten Gleichung bey (6) nach 

und nach N -- A, B, C u. s. w., so bekommt man 
1—«A
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I —mU——m-rZl; ——.'n-iB.
W-iB — mg — — m-lg ♦ — m-Tg ^mT) —m-lT)

11. f. W.
folglich auch

1 — I — MC = —in-1 g
I —»'A ■ MB —wC^mD---m-rD;

also überhaupt
I——mC^mZ).........+2 + M-^N.

W. Z. E. W.

8.

Es muß
o° = 1 = ± -^N seyn.

Beweis.

Wenn in (7) m e= n ist, so wird die linke Sei­
te der Gleichung gleich (1 — i)n und die rechte Sei­
te geht über in aber der nte Binom. Coeff.
der (n f Nten Potenz ist = o; auch ist (1 — i)B 
Null für jeden endlichen wirklichen Werth von n, 
(S. 158. §. 6.); aber für n = o, ist 1—i'e=o°=iz 
folglich muß 1 = seyn. Vielleicht wird hier 
mancher fragen was -*N  eigentlich bedeutet? -igt 
bedeutet den allgemeinen nten Bin. Coeff. des (nti)ten

Gliedes in (ifi)-1 = -L-=i—-ifi — 1,..; 
ifi

(n f i)te Glied dieser Reihe ist aber gewiß
= ~ 1 = 1 . ztr 1 folglich -*N  zuverlässig nichts 
anders al§ 1. Wodurch ich abermals und zwar 
wie mich dünkt, sehr strenge bewiesen habe daß o°=i
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seyn muß, und sich^ also hier auf eine angenehme Art 
bestätiget.

Anm. Für Anfänger muß ich erinnern daß hier n als Ex,. 
Ment ---o nicht Mit N als nU Bin. Coeff, einerley ist.

9.
Wenn man in der Gleichung

r — «A -f- »R = ±.
statt N, V setzt, so hat man in Hinbenbürgische Zeichen 
vollkommen die Formel, die der Herr Pros. Fischer 
in seiner Theorie der Dimensionszeichen §.146. 
noch auf eine andere ihm eigenthümliche Art bewie­
sen hat. *)

*) Fischer beweißt diese Gleichung ohne Hülfe des binomi­
schen Lehrsatzes, daher ist der Vorwurf, den Hr. Töpfer 
(in seiner bekannten Schrift wieder Fischer. S. 169.) 
ihm dieserwegen macht, offenbar übel angebracht.

—m
Schreibt man n — m statt n und R statt R, 

so kömmt

I n-m9{^-n-m$g -4- n-m^= 4-

setzt man nun hierin nach und nach m --- i, 2, z 
u. s. w. , so erhält man ! sogleich, die Formeln 
die im 147. §. der Theorie der Dimensionszeichen 
stehen.

10.
Setzt man in der Formel für ±. — n

statt n, so entsteht

1—



-nU—n^r-lR

Bon diesen Gleichun- 

gen wird man sich 
wohl ohne meine An­
weisung zu überzeu­
gen suchen. — Da sie 
fast von selbst ein­
leuchten.
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7

Und ^--(nfi)sR==ni.r$K

so ist 
lf"8(tn+xS5t n+2S f n+ 3T) ....f

—m
Hierin n f m statt n, und R statt R gesetzt, 

giebt
—m —in

195 + nfmf 2 Q .... -J- ntm-fr-1R—Njin^r^ 
hierin nun nach und nach n = 1 z 2, 3 u. f. ro. ge­
setzt, so erhält man wiederum alle Formeln die bey 
Fischer in §. 148 stehen. Und wenn man hier in der 
Formel für n+r9t, statt n, an setzt, so entsteht die 
Formel, welche Fischer §. 165. giebt.

11.
Die in (9 und 10) enthaltene Formeln ergeben 

sich auch unmittelbar, aus der allgemeinen Summen- t 
forme! für Binomialcoeffizienten. Es war nemlich 
oben

Zn dieser Formel wird bekanntlich
für r -- 0, i, 2, Z, 4. ... '

R-- i, A,B,C,D ...,> '
P.r Setzt
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Setzt man nun hier nach und nach

m I; Zt r?; Jl Z.... r
so geben die negativen Zahlen, die Fischerschen For­
meln in (§. 146— 148), eben so als sie sich aus den 
in (9 und 10) gegebenen Formeln finden. Setzt man 
z. B. m e= — 1, so ist

»--R =s r.--R t "A.-H t "B.-rR f ....

... "R-rB t ff "R. I
Wir haben bereits oben erwiesen, daß alleGlieder ei­

nes Bin. vom Exponenten — 1, abwechselnd — 1 und 
t r find, nachdem die Zahl dieser Glieder nach 
der sie gezählt werden, ungerade oder gerade ist. 
Ob nun ein Glied positiv oder negativ ist, ergiebt 

sich aus der Formel von selbst, die in Nichts von 
der oben gegebenen unterschieden ist, als das jedes 
Glied noch in einem Bin. Coeff. der (— 1) ten Po­
tenz, also in Eins multiplizier, und hier nur beybe­
halten wird, um dadurch die Zeichen der Glieder in 
jedem verlangten Fall bestimmen zu können. Da das 
Glied «R.i in keinen Bin. Coeff. der (— i)ten Po­
tenz multiplizier ist, so hat es immer das Zeichen f, 
schreibt man nun die letzt gefundene Reihe umgekehrt, 
so erhalt man eine bestimmte Norm, deren Zei­
chen durch den Fortgang sich ebenfalls von selbst'er­
giebt, nachdem nemlich die 1 in eine ungerade 
oder gerade Stelle fallt:

Nemlich;

°-rR -- »R — Ä »R — d t .... ±. I
multiplizier man diese Gleichung mit 1 so erhalt

±. ----- 2t "R T i "iX ...f 1

die.
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die Glieder dieser letzteren Formel haben in derselben 
Folge die nemlichen Zeichen, als die Formel in (9), 
und ist auch wesentlich dieselbe, den »A; »B; "C.... 
sind in der Ordnung wie sie hier stehen identisch mit 

-(f-i) —(r-a)
R, R, R, u. s. w.

!2.
Wenn man in den Formeln (3) fetzt, 

m=o rotvi) n9tc=n2l
m = i -
m = 2 - = nSlt2.nS5t «C
m = 3 - «i-ZD —nAs-Z."V7Z-"C -j- «D 
m=4 - 6.«C -fi 4»"D «E.

diese Formeln, findet Fischer §. 367*  zwar nicht auf 
eine so äußerst leichte Art, aber sein Verfahren ist 
ihm gewiß eigen, und nirgends entlehnt so wie über­
haupt sein ganzes Werk, Theorie der Dimen­
sionszeichen. 2 Theile in 4to. Halle 1792., c 
überall Spuren eines geübten mathematischen Scharf­
sinns und Genie zeigt, und wenn man frey von alle 
Parteylichkeit, also nicht etwa vorher wieder den 
Verfasser eingenommen ist, so ist unverkennbar daß 
die ganze Theorie der Dimensionszeichen sein 
Eigenthum ist. — Nicht nur im äußern Bau der 
Zeichen weicht er von Hinden bürg ab. — Nein was 
wesentlicher ist — die Gründe, der ganze Gang — 
Vertrag den er zum Theil hat nehmen müssen, paßt 
nicht für die ich gestehe es gerne weit vollkommenere 

z . und 
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und sich ungleich weit verbreitender Hindenbürgische 
Combinatorische Analytik —- Ein Kopf wie Fischer 
hätte wenn er die Hindenbürgische Comb. Analytik 
gekannt hätte, nie etwas unvollkommeneres liefern 
können*)  — Seine Schrift hat gleichwohl einen ent­
schiedenen Werth, die Analysis endlicher Größen ist 
nicht allein dadurch erweitert, sondern es möchte die 
beste Vorbereitung,zum Studiren der bis jetzt heraus 
gekommenen combinatorischen Schriften seyn, weil 
man sich nun zur nöthigen Uebung die Fischersche 
Formeln, alle in Combinatorische übersetzen kann — 
diesen Dienst hat es wie ich gerne dankbar gestehe 
mir selbst geleistet. — Aber eben diese so leichte Um­
setzung der Dimensionszeichen in Combinatorische, und 

umgekehrt, hat die meisten Beurtheilet und nament­
lich Hrn. Töpfer zu übereilten, ungerechten und bit­
tern Vorwürfen verführt. — Um den wesentlichen Unter­
schied und das Eigenthümliche jeder Methode, gehö­
rig zu würdigen, wähle man ein schwieriges Problem, 
löse es nach beyder Methode auf, so wird sich zeigen 
daß der Gang der Auflösung bey beyden durchaus 

verschieden ist — das aber das Resultat fast selbst 
der äußern Form nur nicht in Zeichen) einerley ist — 
kann entweder als zufällig angesehen werden, 'oder 
kann der Natur der mathematischen Untersuchung ge­
mäß nicht anders ausfallen,

45,

") Sein vvrtreflicher moralischer Caracter, den freylich 
nur die beurtheilen können, die das Glück haben, die­
sen vcrchrungswürdigen Mann näher und genau zu ken- 
»en — bürgt für jede Anmaßung fremden Eigenthums.
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13*

r2)u

ZVy

A’y

oder

Z\ny

ZX4y

die Werthe

* T:m^
Es ist

«A.l"A , »B. mY «C.^C

n+m—(rfi)g^

r(£

m—(r—3)^

rD

n+m—
;

Subftituirt man diese Werthe in der Formel
I 3 —I n—i L

Any=—i.yzH^(.yqrD^y...±.n^ yfi»y
(S. 177. §. 20.)

Beweis.

Man setze in der Hauptreihe (S. 167.. : §. 13);
ia n 

statt y, y, y-**y;
mU "'B 

T' W'

so ist
m-rAs 

zv = i;

m-(t—l)^

'B
m—(r-s)^

it-m—(rfi)^

3tm-(rti)^

7
-D ~'
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oder welches einerley

i s —i n—i n
2t A°y=y —n^ty fi*55y  .... y ±T,y

so erhält man den oben angegebenen Ausdruck.

-4-
Es ist

U«— 

wNSS --- .
--N

Beweis.

Man substituire in der Formel.

y==i>xt” ^Ay f ”Q5/\ey t... "N. Any. (S. 200.) 
die für y, ZXy, ZXey u. f. w. in (13) gefundenen 
Werthe, so ergiebt sich obige Gleichung.

15»
Setzt man in (13), r = — r, so ist

rA-- —i; rS = — 1; rS)=fi'u. f.
wodurch man erhält:

11 "A. "A t "B. '"V.... 4 1» m9? --- n+mg?, 
wie wir bereits (G. 223. 4. Bew.) auf andern We­
gen gefunden haben.

1
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Beweis.

Man setze in (iz), r -- m — i, weil nun auch
in

so ist--

und "N ist -- I; folglich die obige Gleichung Wich­
tig.

17»

Beweis.

Es ist

Setzt man in (13); m — — 1, so entstehet hier 
die erste Hälfte der Gleichung, und aus der 2ten 

Hälfte in (iz) wird ± und dieses ist nach 

(16*  Bew.) e= —r- 1 .
r — 1 — n

Hindenburgs Theorie der combinawrischen 
Analytik»

1.
Wer sich überwinden wird, daß folgende mit einit 

ger Aufmerksamkeit durchzugehen, dem wird die dar­
auf verwendete Zeit, gewiß nie gereuen können — 
er wird, (wenn er der Mann ist der entscheiden darf 
vlsdann sicherlichep die Hindenbürgische Erfin- 



234 i • Hl'ndenburgs Theorie
düng, eine der ersten Stellen, unter den Merkwür­
digen Erfindungen unsers Zeitalters einräumen. Mit 
Herrn Töpfer darf man dreist behaupten, daß durch 
diese wichtige Erfindung, das Grundgebiete der Ana- 
lysis beträchtlich erweitert, die Priorität derselben 
höher gestellt, die Allgemeinheit der Aufgaben, selbst 
in den verwlckelsten Fallen, aufs höchste getrieben, 
und die Formeln für ihre auch noch so sehr zusam­
mengesetzten Resultate, mit der möglichsten simplizi- 
tat, in Absicht auf Ausdruck und Anordnung, Dar­
stellung und Entwickelung, vereinbart — eine Erfin­
dung, welche in der Folge nicht weniger interreffant 
und weiter aussehende Stoffe ihrer Art zum Nach­
denken in Umlauf bringen wird, als das Kantische 

Meisterwerk des Tiefsinns.

2.
Ich werde hier die Theorie.der comb. Analytik, 

nicht in ihrem ganzen Umfange, vortragen — dazu 
ist mir der Raum hier viel zu beschrankt — aber 
auch das wenige was ich hier mittheilen will, und 
was ich nach meine Art gebe, ist gewiß für ieden 
Mathematikverständigen höchst wichtig — Mein Urtheil 
über den Werth der comb. Analytik, ist um so un- 
partheiischer, da ich selbst ehe ich die weit vortrefii- 
chere Methode des Hrn. Prof. Hind. kannte z. B. 
bey dem allgemeinen Productenproblem auf 
manche kurze und leichte Darstellung gerathen war, 
die in besondern Fallen an Leichtigkeit und geschwin­

der Darstellung, gefodertcr Glieder außer der Ord­
nung und indcpendent, der Hindenbürgischen Metho­

de 
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de nichts nachzugeben schienen. Aber sehr gerne ge­
stehe ich daß mein Algorithmus, wie ich jetzt mit 
völliger Ueberzeugung einsehe durchaus nicht wissen­
schaftlich war, und daher dem Hindenburgischen weit 
nachstehet. Ich werde ihm also gewiß nie beschreiben 
da ich selbst jetzt überall bey meinen mathematischen 
Untersuchungen mich ganz der Hindenburgischen Zei­
chen bediene.

Rein - combinatorifche Darstellungen von Permu- 
tationen, Combinationen und Variationen ge­

gebener Dinge.

3*

Die Bedeutung der Wörter: Permutationen, 
Combinationen mit und ohne Wiederho­
lung, Variationen, habe ich in m. Ausg. von 
Eul. Alg. 1 Th. S. 198. 2c. gegeben, und ich ersuche 
dem Leser sich das dort Gesagte vorher gehörig be­
kannt zu machen. Folgende Erklärungen füge ich 
hinzu.

4.
Die zum Variiren, Permutiren oder Combini- 

ven gegebenen Dinge werden, wie sonst schon ge­
bräuchlich, nach der Folge

der Zahlen 1, 2, 3, 4, 5, 6, 7,.... 
oder der Buchstaben a, b, c, d, e, f, 
dargeftellt. Das erste geschieht nach Leihnitzens Bey/ 
spiele , und ist in gewissen Rücksichten sehr Vortheil- 
haft, dennoch aber, bey Combinationen und Varia- 

tonen, 
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tionen, die sich nicht auf bestimmte Zahlen oder 
Summen beziehen, nicht schlechterdings nothwendig. 
Zahlen und Buchstaben, wie hier steht, mit einander 
verbunden, werden immer als Zeiger (index) zu 
den Formeln gesetzt, in denen combinatorische Zeichen 
vorkommen, um nachzuweisen, worauf die Zahlen, 
dieser Zeichen sich beziehen. Nicht selten ist der 
Zeiger

/"i, 2, z, 4, 5, 6 ... A
\b, c, d, e, f, §,...

oder anders.

5
Die einzelnen Species oder Formen von Combi­

nationen oder Variationen gegebener Dinge, werden 
mit einem gemeinschaftlichen Namen Comp l ex to­
nen genannt. Z. B. alle mögliche Amben der drey 
Dinge b, c und d, wenn Wiederholungen verstattet 
werden sind:

bb, bc, bd, cc, cd, dd, 
jede dieser einzelne Verbindung zu zwey oder Ambe 
heißt nun eine Complexion, da man die zu com- 
binirende Dinge entweder durch Buchstaben oder 
Zahlen verstellt, so hat man Buchstaben- und Zah­
len - Complexionen. Die hier den Buchstaben -Com- 
plexionen nach dem sten Zeiger in (4) entsprechen­
den Zahlen-Complexionen sind in eben der Ordnung 
folgende, 11, 12, 13, 22, 23, 33;

Waren keine Wiederholungen verstattet, so sind 
nur 3 Complex. möglich, nemlich

bc, 
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bc, bd, cd,« Buchst. Complex.
12, 13/ 23, Zahlen - - -

Unter jenen Zahlen-Complex. mit Wiederholungen, 
sind welche deren Ziffersumme gleich groß ist, als: 
13, 22; deren Ziffersumme 4 beträgt. In der comb. 
Analytik, ist es öfters nöthig Complexionen zu be­
stimmten Zahlen oder Summen (numeti. dati. C 
propoßti.) darzuftellen; sieht man nicht auf der Zif­
fersumme, so hat man Complex. schlechthin (sim- 
pliciter).

Man wird hieraus schon abnehmen, was man 
unter; Combinationen oder Variationen an sich, (6m- 

pliciter), oder nach bestimmten Summen, zn 
verstehen hat.

6.
Gutgeordnete Complexionen (rite ordina- 

tae) sind, in denen Buchst, oder Zahlen, so auf ein­
ander folgen, daß nie ein früherer Buchstabe auf ei­
nen spätern, eine kleinere Zahl auf eine größere 
folgt. Sie sind die Repräsentanten und Stell­
vertreter aller übrigen Complex., die mit ihnen 
einerley und gleichviel Buchstaben oder Ziffern haben. 
Dergleichen können nur durchaus bey Comb. Vorkom­
men, nicht aber bey Variationen, bey denen man 
alle mögliche Verbindungen zugleich mit allen mögli­
chen Versetzungen der gegebenen Dinge verlangt.

T
Diese Complexionen werden nach Classen geord­

net. Die erste Classe machen die gegebene Dinge 

selbst,
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selbst als Unionen; aus; zur zweyten Classe werden 
die zweybuchstabigen oder zweyzahligen Complex., als 
Binionen, zur dritten die dreybuchftäbigen oder 
dreyzahligen Complex., als Ternionen; u. s. w. 
die 4, 5, 6, u. s. w. buchstäbigen oder zahligen Com- 
plexionen, für die folgenden Classen nach der Ord­
nung , gerechnet.

8.
Alle Classen müssen gut geordnet seyn, (ri­

te ordlnatae) d. h. ihre Complex. (wenn man die dar­
innen vorkommende Zahlen, als Grundzeichen oder 
bloße Ziffern, u. so die ganze Complex. als eine aus 
diesen Ziffern bestehende Zahl ansieht) müssen so auf 

einander folgen, wie Zahlen wachsen; es muß nie 
eine kleinere Complexion, als Zahl, auf eine größere 
folgen. Bey den Comb. müssen also beyde, sowohl 
Complex. als die Classen gut geordnet seyn; bey den 
Variationen kann das nur bey den Classen statt fin­
den, und die Folge ihrer Complex. dadurch bestimmt 
werden.

9-
Alle Complex. einer Classe werden zu einer Ord­

nung gerechnet, wenn sie mit einem und demsel­
ben Elemente anfangen. So gehören aaa, aab, aac, 
abb\ abc zu einer Ordnung, und eben so bbbb, bbbc> 
bbcd, bcde; jene zur Ordnung a der dritten, diese 
zur Ordnung b der vierten Combinationsklasse, 

(Npv. Syft. Perm. p. VIII, 2v).

,10.
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10.

Oft ist es bey Comb. nöthig, zu wissen, wie 
viel verschiedene Complex. derselben, nur aber ver­
setzten Buchst, oder Zahlen, es giebt, wie sie eine 
gutgeordnete Complex., als Stellvertreterinn aller 
übrigen, enthält. Das zeigt die Versetzungszahs 
(numerus permutatlonum) oder der PolyN 0 Mial- 
coeffizient an; welche Zahl man also auf den 
Fall der Complexion versetzen muß. (Eul. Alg. rTH. 
S. 209).

11.
Rein - kombinatorisch heißt nach Herr Hin- 

denburg das Verfahren, wenn die dabey vorkommen­
de Veränderungen, 1) durch bloßes Ansetzen 
oder Beyfügen L) durch bloßes Wegnehmen 
oder Absondertt. 3) durch bloße Aus- oder Um­
tausch ung gewisser, so wie durch bloßer bestimm­
ter Anordnung der übrigen Elemente, gemacht 
werden. Sie unterscheidet sich von der gemischten, 
Ley der öfters, (wenn gleich leichte) Rechnungen vor­
kommen.

12.
Trift man bey der wirklichen Darstellung der zu 

machenden Comb. Arbeit, eine solche geschickte Anord­
nung, daß man durch gerade, horizontale und verti­
kale, Linien, leicht jede niedere Classe ab sondern 
kann, so wie folgende Classen durch bloßes Zu­
setzen an die vorhergehenden, sogleich darzu- 

stellen 
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stellen vermag, so nennt man dieses Verfahren 
Combinatorische Involutionen (involutiones 
combinatoriae). Die durch solches Verfahren bewirk­
ten Darstellungen selbst, werden häufig, Involutio­
nen oder Evolutionen (besondere Involutionen) 

genannt.

-Z
Zur Erläuterung von (12) will ich folgendes Bey­

spiel deutlich auseinander setzen.
In Eulers Einl. zur Anal, des Unendlichen isrer 

Th. §. 360., werden von den continuirlichen Bruche.

c f 7_____
d f 

e f f

folgende Werthe angegeben.
ab * * abc Sa t «c abcd Sad «cd yab f «y 

b ’ bc 's*  0 ’ bcd 's 3d "f*  yb
Ohne den Werth dieser 3 Brüche im geringsten 

zu schaden, setze ich die im Zähler rmd Nenner vor­
kommende Produkte, und auch die Buchstaben dieser 
Produkte in folgender Ordnung 
ab f « abc f «c f aß abcd 4 <*cd  ’s* afld aby ’s «y 

b ’ bc f ß ’ ' bcd f 3d f by 
ich füge hiezu den auf diesen 3 Brüchen, unmittelbar 
folgenden gten Bruch, ordne aber die Buchstaben 
und Produkte gleich so wie sie meiner gegenwärtigen 
Absicht dienlich sind.

abcde



abcde f *ccte  f aflde f abye j*  aye abc? + «ec5*  f «j?£
bede 's*  ßde f bye f bcJ •{• ßä1

Ob Produkte neben oder unrer einander stehen, än­
dert ihren Werth nicht, man schreibe also die partial 
Produkte, des Zählers und Nenners des 4ten Bruchs 
jeden besonders in ihrer Ordnung unter einander so, 
daß ihre Endbuchstaben in einer geraden Linie zu ste­
hen kommen, so erhält man 
Zähler des 4ten Bruchs !

b| c d
d

b y

■M

Nenner des 4ten Bruchs
e
e 

e
b c £ 

ß r
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a b| c d e
l 

*| c d e

a 3 d e
a b y e

a y e
a b c J

<• c r
a ß

Die hier durch die eingeschriebenen Winkel abge­
schnittenen Theile, (Evolutionen) geben sogleich die 
Zähler und Nenner der vorhergehenden Brüche, auf 
eine so leichte Art, daß eine solche mvolutorische 
Darstellung gewiß jeden, der Sinn für dergleichen 
Untersuchungen hat, ganz in Begeisterung setzen muß 
—zumal wenn er erst die Folgen übersieht, die diese 
Involutionen im ganzen Gebiet der Analysis haben

Ferner übersieht man schon aus dem hier mitge­
theilten, daß bey der aufgestellten Involution, nicht 
mehr Buchstaben geschrieben werden, als gerade nur 
zu dem größten unter den darzustellenden Brüchen 
nöthig sind, alle kleinere Brüche, sind mit diesem zu-

Q gleich
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gleich dargesrellt. Man denke sich die Arbeit, wenn 
man nach Euter, Lambert oder Lag ränge, nur 
den 2often Bruch in seiner Ordnung, wozu jene die 
4 ersten sind, darstellen soll — Nach ihnen kann es 
nicht anders geschehen, als man muß alle vorherge­
hende wissen — aber nach der hier gezeigten Darstellung 
kann solches independent geschehen, dabey wird wie 
schon erinnert nicht ein Jota mehr geschrieben, -als 
durchaus nöthig ist nur den gefoderten 2osten Bruch 
darzustellen, daß die vorhergehenden 19 Brüche zu­
gleich mit conftruirt sind, ist eine Vollkommen­
heit dieser Methode mehr — Es würde an diesem 
Orte noch unverständlich seyn, mehr hier davon bey- 
zu bringen — Ich begnüge mich also an diesem Bey, 

spiele gezeigt zu haben, daß die combinatorische Ana­
lytik hier bey den continuirlichen Brüchen etwas lei­
stet, was die feinsten Kunstgriffe der Analysis, bey 
aller Bemühung eines Eulers und Lag ränge bis­
her nicht zu leisten vermochte. Wie nahe waren Der- 
nouilli und Lambert und Euter dieser Erfindung? 
es bedurfte, wie man siehet nur einer zweckmä­
ßigen Anordnung der Produkte und Buchstaben, und 
die ganze Involution liegt vor Augen. — Eben diese 
erstaunliche Leichtigkeit erhöhet den Werth der Hin- 
denburgischen Erfindung ungemein.

Dir Zeichen tue Herr Hindenburg bey seiner 
Theorie eingeführt hat, sind Lokalzeichen, com­
binatorische und andere. Von den Lokalzeichen 
sind in unsern vorhergehenden Abhandlungen bereits 

ei-
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einige erklärt, und wie ich hoffe zeigen diese Abhand­
lungen genugsam, wie Vortheilhaft der Gebrauch die­
ser Zeichen überall in der Analnsis ist. Daher soll­
ten billig alle Analysten sich künftig dieser Zeichen 
bedienen, so würde doch wenigstens der Anfang zur 
Einführung einer unveränderlichen und zweck­
mäßigen Bezeichnung gemacht Sind wir 
Deutsche dieses nicht selbst, dem verehrungswürdigen 
Erfinder schuldig? *-------*

Einige der kombinatorischen Zeichen, will ich hier 
vorläufig mittheilen, andere werden besser- wenn sie 
vorkommen erklärt.

I. die Zeichen für die Classen nach der Ord­
nung, find für die Combinationen an sich 
(fimpliciter)

'A, % 'C, D, zL . . . . 'N 
wo ZN nicht etwa die so vielfte Classe bedeutet, 
als der so vielfte Buchstabe sie im Alphabeth ist — 
sondern, unter der hier gezeichneten Figur zeigt 
sie überhaupt die nte Classe an. Noch erinnere ich 
daß jede Complexion in einer Elaste aus so viel Ele­
menten bestehen muß, als die Zahl der Classe- 
mithin der dieser Classe bezeichnende Buchstabe 
anzeigt.

II. Die Zeichen für die Classen nach der Ord­
nung, sind für Variationen an sich:

'A, 'Bi ZC, 'D, <E 4 . , \ 'N
wo '2V wiederum die allgemeine nte Classe anzeigt. 

Q 2 111.

Eigentlich sollte hier nach Hindenbüng eine Art ge­
schriebener Buchstaben stehn, allein da er in der Dru­
ckerey fehlt so hat man das N deybeyalten > dieses gilt 
auch bey den Variationen.
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in. Für Classen zu bestimmten Zahlen «, m, oder 
Summen

Für Combinationen:
«A, «B, ”C, ”D .... nM

*M, bedeutet die allgemeine mte Classe zur Sum- 
ane «; d. h. wenn die in derjmten Classe stehenden 
Dinge mit dem im Zeiger ihnen correspondirenden 
Zahlen., bezeichnet werden, so sollen die Summen 
dieser Zahlen in jeder Complexion der mten 
Classe, alle einander gleich seyn, und n Einhei­
ten betragen.
Für Variationen zu bestimmten Sum- 

' wen rn
1M, mß, »C, fi’D . . . . mN.

iV. Zahlen, neben den Classenbuchftaben, rechter 
Hand, zeigen einzelne Complexionen der Clas­
sen nach ihrer Ordnung an:

'Ag; zß5; 'Cr . . . . ”Fio ; rHn . . . 
und so auch bey den Variationsclassen.

V. Nemlich rHn, bedeutet die nte Complexion der 
8ten Combinationsclasse zur Summe r.

Werden die zu comblnirenden Dinge aus meh­
reren Reihen r, p, q, s u. f. w. genommen, so 
werden die combinatorischen Darstellungen, so ge­
macht, daß immer die Elemente jeder Reihe ge­
gebener Dinge in eine bestimmte Berticalrei­

he zu stehen kommen.
Z. B. die Elemente von p in die erste,

— — — — — q — zweyte
— — — — — r — dritte
— — — — — § — vierte

m. .w. von der Rechten nach der Linken.
Da-
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Damit man nun gleich sieht, auf welche 

Reihe sich jedes Classenzeichen bezieht und in 
welcher Ordnung: so setzt man die Reihenex- 
ponenten, p, q, r, s . . . in bestimmter Ord­
nung gleich über die Classenbuchftabcn.

p qp rqp srqp ... srqp
Z. B. nA, «B, «C, nD . . . . nM

Hier bedeutet der letzte Buchstabe die mte Varia- 
tionsclasse zu Summe n, aus den Elementen, 
der Reihcnexponenten pt q, r, s . . . . und zwar 
die Elemente neben einander in vertikal Reihen 
so gestellt, wie kurz vorher gesagt ist.

vi. Die einzelnen Complexionen der Classen, mit 

ihren Versetzungszal-len, oder Polyno- 
mialcoeffizienten, anzudeuten, werden den 
großen lateinischen Classenbuchftaben die kleinen 
gleichnamigen deutschen Buchstaben vorgesetzt: 

ct'A, b'B, c'C, b'D... oder a"A, b»L, cnc, d"v... nrN 
Es bedeutet nemlich, nrN, so viel als die nte 
Combinationsclasse zur Summe r, mit der zu je­
der ihrer Complexion gehörigen Versetzungszahk.

VII. Oft kommen die in I bis vi beschriebenen Zei­

chen, zusammen, wie
mA. a'A f1115J5. b 'B f “ S. c ZC... f m . n 'N 

eder ..anAt . bnß t . cnc... f . n nN 
Deren Werthe durch die beygefügten Zeiger 

b ’ * ; ,) oder na*  erwiesenen

Regeln und constuirten Tafeln sogleich entwickelt 
und dargestellt', auch in Lokalausdrücke 
pm1n.,. qplm (durch welche man statt der Glie­
der selbst nur ihre Stellen angjebt) und umge­

kehrt 
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kehrt verwandelt werden können. Von solchen 
Lokalausdrücken und ihren Werthen (Nov, Syft. 
Comb. p. ll LIIL). Es bestehet nemlich ein 
Glied jener Reihen wie “•StiV’N, aus dem m9t 
oder nten Binomialcoeffizient der mtcn Potenz, 
aus n oder der Versetzungszahl jeder einzelnen 
Complexion der nten Classe und endlich aus nN, 
oder die nte Combinationsclasse zur Summe n.

Z. B. .b’Btm£.c3C

a ist, da ein einzel­
nes Ding keine Ver-

hier ist ’An z oder c zuläßt, im-
12 oder ab tner i. Da ab oder 12, 

^-Ilioderaaa dieVersetzungbaoder
2i zulassen, so ist hier 
b—2;bey3<ifindet,dLdemnach -nU.a'A--lnA.e

»B.b — mB.2ab d^e Elemente gleich 
rnC.c3L----'"C.a ftnb keine Versetzung

statt, also ist hier 
c --- 1.

V1H. Die Distanzexponenten, die als Zahlen 
über die Buchstaben geschrieben werden, dienen 
dazu, um durch ihre Beyhülfe gleichnamige Zei­
chen, wie sie Ibis vn vorkommen, durch einan­
der auszudrücken, vorhergehende durch folgende 
und umgekehrt, bestimmte durch unbestimmte und 

Wechselsweise,
IX, Werden bey deft Involutionen die Elemente so 

gestellt, daß sie wie Wörter in alphabethischer
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Ordnung, vor oder rückwärts gelesen, auf einan­
der folgen, so heißt dieses die lexikographi­
sche oder alphabethische Fortschreitung — 
Der Gebrauch.dieser lexikographischen An­
ordnungen, ist in der Analysis sehr wichtig. 
Das Verfahren, nach welchem hierbei) die ge­
suchten Complexionen, durch Zusammensetzung 
oder Absonderung ihrer Elemente, in horizon­
taler, vertikaler oder aus beyden gemisch­
ter Richtung, sich ergeben verstattet immer, ein 
solches Verbindungsgesetz auszuwählen, welches 
das gesuchte Resultat leichter und geschwin­
der herbeyführt, als auf keinem andern Wege 

durch kein anderes Verfahren, möglich ist.
Involutarifche Darstellungen, werdey 

von andern combinatorischen durch unterschie- 
fchieden; jenes für Combinationen dieses für Va­

riationen— die lexikographischen Darstel- 
lungen, erhalten zu ihrer und zur Bezeichnung 
der Classen 
für Combinationen J, JB, C ♦ ♦ ♦ 

für Variationen J, C . .. *)
Wem hier noch nicht alles bis zum höchsten 

Grad, verständlich ist, der wird^im folgenden völ- 

befriediget werden.
Ver-

*) 3*  deuten nemlich lexikographische.- Involutionen
«n.
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Verse hungen. (Permutationes).

-5
Aufgabe.

Gegebene Dinge oder Elemente

4, 5, 6, 7, . . .
x s> K Cj e, f, g, , , , 

auf alle mögliche Arten zu versetzen.
E r st e A u f l ö su n g. Aus der Anfangscomplexion 

Lbcäe... oder 12Z45... für n Dinge, suche man die 
nächst folgende höhere*)  und aus dieser wieder die 
nächsthöhere (immer aus demselben und gleich- 
vielen Elementen bestehende) Complexion, u. f. fort, 
nach folgender Regel.

*) Höhere »der niedrigere Complexionen find hier mit grS- 
her» edcr kleinern Zahlen gleichgültig.

L Man suche von der Rechten nach der Linken 

zu, das erste Element, das als ein niedrigeres oder 
kleineres, auf ein höheres oder größeres folgt;

II. Zu diesem niedrigern suche man, aus denen 
die ihm zur Rechten stehen, das nächst höhere;

ni. Man setze dieses höhere Element (ii) in die 
Stelle des niedrigern (D behalte die Elemente zur 
Linken (wenn dergleichen vorhanden sind) unverän­
dert bey, und schreibe das niedrigere mit den übri­
gen, gutgeordnet, von der Linken nach der Rech­
ten zu;

iv. Die Complexion, auf welche man die Vor- 
chriften (i, II, in) nicht weiter anwenden kann, ist 

ülsdann die letzte.
16.
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Beyspiel. Auf 123456 ferner 124563

folgt 123465 - 124635

und darauf 123546 - 124653

und dann 123564 - 125346

ferner 123645 - 125364

- 123654 - 125436
- 124356 - 125463

r 124365 - 125634

- 124536 - 12564z
ik s. w.

bis man auf die letzte Complexion 654321 verfallt, 
wo kein niedrigeres Element auf ein höheres folgt. 
Die punctirten Buchstaben sind hier die beyden Ele­
mente cher Auflösung (15. 1. n.) Da hier 6 ver­
schiedene Elemente zu versetzen sind, so geben diese 
1.2.3 ....6 = 520 verschiedene Versetzungen. Denkt 
man sich unter jenen Zahlen die Augen von 6 Wür­
feln, so beträgt die Summe der Augen in jeder ^Com- 
plexion 2.1; diese Summe kann daher mit 6 Würfeln 
auf 520 verschiedene Arten geworfen werden.

Wäre statt der Zahlen-Complexion 123456; die 
Buchstaben - Complexion, abcdef gegeben, so stehen 
die aufeinander folgende Versetzungen nach obiger Re-r 
gel so:

1
abcdef
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a b c d e f

a b c d f e

a b c e d f

\ a b c e f d 

a b c f d e 
a b c f e d 

U. s. W.
Obgleich die Buchstaben-Complexionen, ganz wie die 
Zahlen - Complexionen behandelt werden, so wird 
doch fast ein jeder die Behandlung der Zahlen leich­
ter finden, weil man das kleinere und nächst größere, 
überhaupt die ihrer Größe nach auf einander folgen­

de Elemente, bey Zahlen weit geschwinder als bey 
Buchstaben übersieht. Ich würde also hier, immer 
lieber gleich Anfangs, statt der vorgegebenen Buch­
staben - Complexion, die nach dem Zeiger ihr ent­
sprechende Zahlen - Complexion wählen, daraus die 
gesuchten Complexionen schaffen, und nachher wenn 
es nöthig ist, alles in Buchstaben übersetzen. — We­

nigstens ist dieses bey Complexionen welche aus viele 
Elemente bestehen nöthig.

2tes Beyspiel. Nach jener Regel (15) findet 
man auch die Versetzungen von 11222 worin nicht 
alle Elemente verschieden sind nach her Ordnung.

11222 12212 2II21 2I22I 22I2I
12122 12221 21212 22112 222II

An-
1
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Anmerkung.
Die Auflösung.(15) hat Hv. Hindenburg zuerst 

1784 in seiner Vorrede zu Rudig. Specim. anal, de lin. 
curv.see. ord. p. XLVI, XLVII. beschrieben. Hier wer­
den immer Complexionen aus Complexionen 
abgeleitet, jede nächstfo lgende aus der unmittel­
bar vorhergehenden, und umgekehrt, kann man 
auch z. B. aus der Complexion 222/1, sogleich die 
nächstfolgende niedere 22121 herleiten; aus dieses wie- 

derdie nächst niedere u. s. f. (zum Unterschiede punc- 
tire ich hier unterwärts). — Das Verfahren ist hier 

also dependent, aber ganz allgemein und hat etwas 
Absolutes. Es ist um so mehr zu empfehlen, da es 
die wenigsten Data erfordert, und man von jeder 
gegebenen Complexion, außer der Ordnung, so­
gleich weiter fortgehen kann?

Bey den Versetzungen ist dieses Verfahren rein 
kombinatorisch. Das ist aber nicht immer der Fall 
bey andern Operationen, wo man dadurch zuweilen 
auf arithmetische Summen oder Ergänzungen ge­
führt wird, die für Buchstaben - Complexionen nicht 
immer (wenigstens nicht so unmittelbar) die Bequem­
lichkeit haben, wie für Zahlencomplexionen.

Es soll daher hier eine 2te Auflösung gegeben 
werden, bey welcher Ordnnungen aus Ordnung 
gen, nächstfolgende aus unmittelbar vorher­
gehenden, gefolgert werden; ein Verfahren,, das 
sicb durchgängig, auch bey den übrigen hier aufzu- 
führenden Operationen, rein kombinatorisch beweisen 
wird, eben so leicht ist als jede andere Vorschrift zu
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> permutiren, aber in der Anwendung und in ihren 
Folgen nützlicher als alle übrigen.

17-
Zweite Auflösung. Der Gang des Verfah­

rens bey folgenden bestimmten Fall ist wie man so­
gleich wahrnimmt allgemein (inf.Dignlt. p. 78. not.) 
In der Auflösung, werden hier immer nur die Buch­
staben genannt werden, weil man sich die entspre­
chenden Zahlen leicht denken kann.

Gegebene Elemente

(v 2, 3, +A
a, b, c, d,y

I. Man setze, wie hier zur Seite, das Element 

d als einzelnes Ding

1234 ab cd, 2134 bacd 3124 cabd 4 1 2 3> d a b c

1243 abdc 2143 bade 3142 cadb 4 I 3 2 d a c b
1324 acbd 2314 bcad 3214 cbad 4 2 1 3 d b a c
1542 acdb 2341 beda 3241 cbda r 2 d b c a
1423 adbc 2413 , bdac 3412 edab 4 3’1 2 d c|a b
I432 adcb 2431 bdea 342i cdba 4 3|2|l d d|b|a

b| c|d 
b|d c 

c b d 
c d b 
d b c 
d c b

II. Dem d setze man das nächst vorhergehende 
Element c vor; das giebt cd, die Ordnung c aus 
zwey Dingen c3 d. Aus der Ordnung c findet man die 

folr

i|2| 3I4. a
1 2U_3_ 3
1324 a
1 3 4 2 a
1423 a
I 4 3 2 a
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folgende Ordnung d, wenn man c und <1 gegen ein­
ander umtauscht. Das giebt zusammen cd und dc, 
die beyden Versetzungen zweyer Dinge,'c, d.

III. Den einzelnen Eomplexionen cd und dc in II 
setze man b vor. Das giebt die Ordnung b, aus 
welcher man die Ordnung c, und aus dieser wieder 
die Ordnung d findet, wenn man, im ersten Fall 
b,c mit c, b, im zweyten c,d mit d,c verwechselt, und 
die so abgeleiteten Eomplexionen unter einander 
schreibt. Das giebt zusammen bcd, bdc, cdb, dbc, dcb, 
die sechs Versetzungen von drey Dingen b,c,d.

iv. Den einzelnen Eomplexionen in III setze man 

a vor. Das giebt die Ordnung a von vier Dingen 
a, b, c, d. Aus der Ordnung a findet man die Ord­
nung b, und aus dieser die Ordnung c, und aus die­
ser die Ordnung d, durch successive Vertauschung der 
Buchstaben a,b mit b, a und b,c mit c,b und c,d mit 
d,c und dadurch alle 24 Versetzungen von 4 Dingen 
a,b;C,d wie oben stehen, wo aber die Ordnungen (nach 
IV) nicht unter, sondern neben einander gesetzt wor­
den sind.

Eben so verfährt man bey mehr gegebenen Din§ 
gen und mehreren Ordnungen derselben. Zugleich er­
hellet, daß soviel verschiedene Ordnungen statt finden 
als Elemente gegeben sind, und daß jede Ordnung, 
gleich viel Eomplexionen hat, vorausgesetzt, daß 
alle Elemente verschieden sind, denn sonst hat die 
Ordnung desjenigen Elements, welches am öftersten 
in der Reihe der gegebenen vorkömmt, die meisten 
Eomplexionen.

S8*
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18.
Das oben in 17 und neben n beygefügte Sche­

ma der Ordnung 4 und 1 oder d und a, zeigt durch 
die eingezogenen Winkel, daß diese Auflösung zu den 
involutorischen gehöre. Diese Involution für vier 
Dinge enthält nemlich zugleich folgende Evolutionen 
(besondere, niedrigere Involutionen) für ein Ding 
d oder a; für zwey Dinge c,d oder a,b; für drey 
Dinge b,e,d oder a, b, c.. Die Complexionen gehen 
hier unter ü'ch wie wachsende Zahlen fort, und sind 
zugleich lexikographisch; daher kann man auch folgen­
de Regel der Versetzung von n Dingen geben.

„Man setze für n Dinge c,d,e,f... die Zif- 

„fern oder Elemente 1, 2, 3, 4/ 5, 6... Schreibe die 
„niedrigste nzifrige Complexion 1 2 3 4 5 6.un und 
„alle gleichvielziffrigtc successive höhere Complexionen, 
„nach der Ordnung, bis zur höchsten n...654321, 
„die sich aus den gegebenen Elementen (ohne eins 
„Mehr als einmal zu setzen) schreiben lassen: so hat 
„man alle mögliche Versetzungen der gegebenen nDin- 
„gen in Ziffern, und dadurch auch in Buchstaben 
„(Nov*  Syst. Perm. p. XVII. XVIII.)".

Daraus fließt, theils unmittelbar, theils durch eine 
leichte Folget

«) Die Regel, folgende Complexionen aus 
unmittelbar «vorhergehenden abzuleiten-. wie 
dazu die erste Auflösung (15) Anweisung giebt.

£) Die Formel 1.2.3 .4*  * • •n für die Anzahl 
der Versetzungen von verschiedenen Dingen,

7) Die
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y) Die Beantwortung der Fragen: die wieviel­

ste eine gegebene Complexion. Z. V. 3412 oder cdab 
in dieser Ordnung sey, und wie eine durch ihre 
Ordnungszahl angegebene, z. B. die 19U Com­
plexion aussehe?

Das alles laßt sich auf dem Wege der Involu­
tion leichter, als auf andern Wegen, finden und. 
beantworten.

19.
Anmerkung.

Andere Regeln zu permutiren hat ehemals selbst 

Hr. Hindenburg in seinen Schriften gegeben. Herr- 
Professor Klüget, giebt in der 1796 von Hinden­
burg herausgegebene Schrift der polynomische 
Lehrsatz, S. 53- ein anderes gleichfalls involutori- 
sches Verfahren. — Herr Professor Burja giebt in 
seinen Algebraisten ister Theil Seite 6, 7, 8, u. 9, 
zweyerley Auflösungen, davon die erste die Comple- 
xionen gerade so wie unsere 2te Auflösung giebt — 
In Rosenthals Math. Encyklopädie, ist das 
Vurjasche Verfahren abgeschrieben, ohne Herrn Burja 
zu erwähnen. — Mehrere Stellen der Burjaschen 
Werke und auch Werke von andern Mathematikern 
sind auf fokf.Art von Hr. Roftnthal benutzt wor­
den. Herr Burja nennt die Permutationen, auch 
vollständige Verwechslungen, (cömbiiiäifons 
totales) die Anordnung die Michelsen im 2ten 
Theile seiner politischen Rechenkunst Seite 19. aufge­
stellt, giebt die Complexionen, auch wie hier, und so 
findet man dieses bey mehrere Schriftsteller, aber 

keiner 
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keiner hat die Involutionen wahrgenommen — 
keiner hat so leichte zu befolgende Vorschriften gege­
ben — keiner hat so glückliche Anwendungen gemacht 

als Hindenburg-

Variationen überhaupt mit Wiederholungen. 
(Variationes fimpliciter, admiflis repetitionibus)

20.
^Aufgabe. Gegebene Dinge oder Element

Cr 2 3 4 5 6 ? . . A 
a b c d e f g . » 

zu variiren, oder auf alle mögliche Arten zu zwey, 
drey, vier u. s. w. in gut geordnete Classen zusarrö 

menzustcllen:
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<A

'B

\ (*)
c da b

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db- ' dc dd
aaa aab aac aad

S $

ada adb ade add
baa hab bac bad

# - -
bda bdb bde bdd
caa cab cac cad
- - s S *

cda cab ede edd
daa dab dac dad

- -
dda ddb ddc ddd
aaaa aaab aaac aaad

4D u, f. w.
b a a b
b a a g

(3) ,

U. s. W.
Erste Auflösung. 1 Die gegebenen Elemente 

*,b, c, d setze man, als einzelne Dinge (Uniones), in 
die erste Classe IA.

n. Den einzelnen Unionen in *A  setze man erst a, 
dann b, dann c, dann d vor. Das giebt zusammen 
alle Binionen der zweyten Classe 'B.

III. Den einzelnen Binionen in ‘B setze man wie­
der erst a, dann b, dann c, dann d vor. Das giebt 
zusammen alle Lernionen der dritten Classe 'C.

R ' IV.
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IV. Eben so erhalt man, durch successives Vorse­

tzen der einzelnen Elemente a, b, c, d, vor alle Ter- 
nionen in 'C, die Quaternionen der vierten Classe 'D, 
vor alle Quaternionen in 'D, die Quinionen der fünf­
ten Classe u. s. w. alle übrige Variationscomple- 
xionen der folgenden, aus den unmittelbar vorherge­

henden, Classen.
Zweyte Auflösung. T.Sie gegebenen einzel­

nen Elemente a, b, c, d (gleichsam als so viel einzelne 
Ordnungen) setze man in die erste Classe 'A.

II. Den Unionen in *A  setze man sämmtlich das 
Element a vor. Das giebt die Ordnung a; aus wel­
cher man durch Umtauschung des vorgesetzten a mit 
b, die Ordnung c; und daraus weiter, durch Um­
tauschung des vorgesetzten b mit c, die Ordnung c; 
und daraus weiter durch Umtauschung der Vorgesetz­
ten c mit d, die Ordnung d der Binionen der zwey­
ten Classe ‘E findet.

in. Den Binionen in *B  setze man sämmtlich das 
Element a vor. Das giebt die Ordnung a der Ter- 
nionen, u. f. w. alle übrige Ordnungen derselben in 
der dritten Classe 'C, wenn man (wie in II.) statt 
der successive vorgesetzten a, b, c nun b, c,d setzt.

IV. Eben so erhält man, durch suecessives Vorse­
tzen und Austauschen der Anfangsbuchstaben a, b,c 
mit b, c, d der vierten, fünften und folgenden Classen, 
'D '£ u. s. w. sämmtliche Ordnungen a,b, c, d jede 
nächstfolgende aus der unmittelbar vorhergehenden.

21.
Nach der ersten Auflösung (hier 20. und Nov. 

Syst. Perm. p. XXI,) werden Classen aus Classen, 

nach
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nach der zweyten, Ordnungen von Ordnungen 
(und so mittelbar auch Classen) abgeleitet, beyde 
Verfahren sind hier rein -kombinatorisch, auch gehen 
ihre Complexionen wie wachsende Zahlen fort, und 
sind zugleich lexikographisch geordnet. In der Dar­
stellung (20, s) ist ein Element (d) weniger als bey 
a genommen worden, um nicht die Colonne zu lang 
zu machen, des Fortgangsgesetz (für noch so viel 
Elemente) liegt dennoch klar und deutlich vor Augen.

22.
Die Auflösungen (22) der Aufgabe passen beyde 

auf die hier (20,», vorgelegten Schemata. Indes­
sen sind beyde Darstellungen sehr von einander ver­
schieden. In der ersten werden für jede einzelne 
Complexion die vorzufetzenden Elemente mit den übri­
gen immer ganz in die folgenden Classen hinge­
schrieben; in der andern werden, für die Comple­
xionen der ersten Ordnung a, diese a den zugehörigen 
Complexionen der vorhergehenden Classe nur vor- 
die übrigen Ordnungen aber, ganz ausgeschrieben, 
darunter gesetzt. Das giebt eine große Verkürzung 
und zugleich eine Involution in aller Form. Sie 
stellt, eben so wie jene, Summen von Classen, aber 
auch einzelne Classen, außer der Ordnung dar, 
und zeigt beyder Zusammenhang durch die figürli­
che Anordnung mit eingezeichneten Winkeln.

2Z.
Die Variationscomplexionen in (20,«, und-s) be­

ziehen sich sämmtlich auf die einzige Reihe der ge-

R.2 gebe- 
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^ebenen Dinge a,b,c,d.... von denen also in jeder 
Classe alle Combinationen mit allen Versetzun­
gen zugleich vorkommen. Das wird durch

M f 'B f 'C f ZO t t ZN 
<12345 6...A 
\a, b, c, d, e, f,... V 

angegeben; durch Setzung nemlich der Classen, mit 
Beyfügung der einzelnen durch Variation zu verbin­
denden Elemente im Zeiger. Oder mit andern Wor-. 
ten. Jene symbolische Darstellung ist nichts anders 
als die Aufgabe in 20.

-4-

Man kann aber auch, wenn mehrere Reihen von 
Elementen

lsI' 2, 3, 4, 5, 6, 7 1
1

la, b, c, d, e, f, g = P|
A.

in,

B, c, D, E, F, 0 ....
b, c, d, e, f, g

= s J
&rc.

l«, B, C, D, E,
U. s. W.

F, G ....

gegeben sind (wie hier zeigerförmig beysammen­
stehen) die Auflösungen (20) ohne alle Schwierigkeit 
sogleich dahin modisiciren, daß jede einzelne Com- 
plexion ein Ding dieser Reihen enthält: die Unionen 
aus p, die Binionen aus g,p, die Ternionen aus r,q,p, 
die Quaternionen aus s,r,q,p u. s. w. für Variations- 
complexiönen folgeüder Classen und mehrerer Elemen- 

tenreihen. Man darf nur den Elementen ach,c... dir 
letzte Stelle in den Complexionen die sie (in 20. 
schon haben, lassen, in die zweyte Stelle aber ♦ ■.

und
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und in die dritte a,b,c... und in die vierte A,B,C... 
u. s. w. bey Complexionen von mehrern Stellen, se­
tzen, ober, während der Auflösung und Darstellung 
selbst, zum Vorsetzen und Umtauschen, unmittelbar 
gebrauchen. Das ändert, wie man sieht, nichts in 
den Vorschriften der Auflösungen (20) weil man eben 
so leicht a,b,c ... und a,b,c... und A,B,C... U. s. w. 
als a,b,c ♦.. vorsetzen und Umtauschen kann.

25-
Auf diese Art erhält man

(•) (-)
p

•A a b e d A a A a
Aa Ab Ac Ad A a A b

qp Ba Bb Bc Bd u. A a A c

Ca Cb Cc Cd A a ß a
Da Db Dc Dd A a 3 b

ctAa aAb aAc öAd A a B' e
* € j■ f A a C a

<Da avb avc ClDd. f. A a C b
hAa bAb bAc bAd A a c e
- - - - A b A a

bDa bDb bDc bDd A b A b
CAa cAb cAc cAd A b A c

r - - - s -
rqp 
'C

<Da (Db eDc CDd w. A b C e
dAa bAb bAc bAd A c A a

- - - - A c A b
bDa bDb bDc bDd - 1

Sl-qp AaAaLlaAb AaAc ÄaAd Aj c C c

u. s. w. B. a A a
B. a A b 

u. s. w.
und
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und so kommen hier immer die Elemente jeder Reihe 
gegebener Dinge in eine bestimmte Verticalreihe 
zu stehen; die Elemente von p in die erste, die von 
g in die zweyte, die von r in die dritte, die von 
s in die vierte u. s. w. von der Rechten nach der 
Linken. Damit man nun gleich sieht, auf welche 
Reihen sich jedes Classenzeichen beziehet und in wel­
cher Ordnung: so findet man hier die Rethenexpo- 
nenten p,g,r,s... (24) in bestimmter Ordnung gleich 
über die Classenbuchstaben gesetzt.

26.
Herr Hindenburg hat von diesen so angeordne­

ten Complexionen aus den Elementen mehrerer Rei­
hen , sehr häufigen Gebrauch in der Anwendung ge­
macht. Dahin gehören die Tafeln (Infi. Dign. p 173. 
177 feq. und Nov.Syft. Perm. LX. und LXI. feq.) Die 
Zahlen in den dortigen Zahleneomplexionen 
sind wirklich variirt, d i. auf alle mögliche Art com- 
binirt und permutirt. Die Anwendung aber auf meh­
rere Buchftabenreihen wie hier in (24, 25) giebt bloß 
Combinationen der Elemente dieser Reihen.

27.
Variationen sind unter allen eombinatorischen 

Arbeiten die leichtesten; in meiner Ausg. von Eu­
ters Akg. 1 Th. S. 2oi. findet man von mir eine an­
dere Methode gegebene Dinge zu variiren. Herr 
Burja nennt die Variationen, weitläuftige 
Verwechselungen (combinaisons vagnes); (Alge- 
braiften 1 Th. S. 136^

Eine
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Eine sehr sinnreiche Bemerkung des Herrn Pro­
fessor Hindenburg, ist auch diese, daß die Regeln 
zum Variiren, und daher auch zum Combiniren und 
Permutiren, keine anderen sind, als die allgemeinen 
Gesetze, nach denen der Verstand zahlt. Denn wenn 
man/z. B. in der Dekadik von o bis 9 zahlt, so 
braucht man dazu zehn einzelne Ziffern. Zahlt 
man nochmals von vorne aber zweyzifrig, nemlich 
00,01,02,... 09,10,11. .99, so hat man alle Varia­
tionsamben von zehn Ziffern gemacht. Zahlt man 
nochmals von vorne aber dreizifrig, nemlich 000,001, 
002,... 009,010,011,912..*  099,100,101,102..,999 so 
hat man alle Variationsternen von jenen zehn Zifern 
formiret, u. s. f. Hierher gehören auch di? nützlichen 
Bemerkungen von
. J v<; / ' ' J

Zahlensysteme in und umeinander; Fortschreitungs- 
geseh für Zahlen.

28.
Dyadische Triadische System. Tetradische System., 
System.

O I O 1 2 0 1 2. 3
0 OO 01 0 00 01 02 0 00 01 02 03

10 II 10 11 12 10 11 12 13
I OO 01 20 21 22 20 21 22 23

IO II I OO 01. 02 f 30 31 32 33
TO OO 01 10 11 12 I OO 01 02 03

IO II 20 21 22 IO 11 12 13
II OO 01 2 OO 01 02 | 20 21 22 I23

L

TOO
10 II IO 11 12 3° [31 32133
00 01 20 21 22 1 rc. rc. rc. rc.
IO II rc. . rc.rc.
rc. rc.

Dode--
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:c. rc. re.

Dodekadisches System.
0 I 2 3 4 567 8 9 z e

00 01 02 03 04 05 06 07 08 09 Oz oe
10 II 12 13 14 15 16 17 18 19 Iz ie

20 21 22 23 24 25 26 27 28 29 2z 26

30 31 32 33 34 35 36 37 38 39 3Z 3e
40 41 42 43 44 45 46 47 48 49 z 4e

50 51 52 53 54 55 56 57 58 59 5 2 50
60 6l 62 63 64 65 66 67 68 69 6/ 6e

70 71 72 73 74 75 76 *7*7 78 79 "Z 7e

80 81 82 83 84 85 86 87 88 89 8? 8e
90 91 92 93 74 95 96 p 98 99 ~)7 9e
zo ZI Z2 Z 1 2 5 ? 6 z8 z9 zz ze

60 ei 62 6? e4 65 e6 67 68 69 ez ee|

Diese figürlichen sämmtlichen kombinatorischen 
Anordnungen zeigen zweyzifrige Gesetze, für 
das dyadische System im ersten, für das Tria- 
dische im zweyten, für das tetradische im dritten 
und für das Duodecimalsyftem im vierten Paral- 
lelogramme, mit den überschriebenen Zifern o, i, 3, 4, 

5, 6.... als einfachen Grundzeichen. Durch 
die bey den 3 ersten Parallelogrammen, zur Seite 
beygeschriebencn o, 1, 2, 3.... wird die Fortschrei- 
rung der Zahlen in jedem System nach der Ord­
nung, deutlich nachgewieftn.

Insbesondere gehört hieher das vierte Parallelo- 
gram, in Form eines Quadrats, Mit den übe^schrie- 
benen Grundzeichen o, 1, 2, 3..».9, z, e (z und e, 
find angenommen ute und rate Grundzeichen) deS 
zwölft heiligen Zahlengebäudes, in welchem 

zugleich 
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zugleich alle kleinere, von weniger als 12 Grund­
zeichen, enthalten sind und deutlich vor Augen liegen, 
so wie alle größere, von mehr als 12 Grundzei­
chen, daraus sogleich hergeftellt werden können. Das

. 10 11 
zweyzifrige Gesetz von zwey Grundzeichen liegt 

00 01
oben linker Hand; daraus entsteht, durch Anlegung 

02
des Winkels oder Gnomons - das zweyzifrige

20 - 22
00; 02

Gesetz von drey Grundzeichen - - und daraus, 
22 - 22

03 
durch Anlegung des Winkels oder Gnomons - das

1 30'33
00; 03 

zweyzifrige Gesetz von vier Grundzeichen - - u.s.w» 
ZO-ZZ

Die Gesetze von 5, 6.... bis auf 12 Grundzeichen, 
für das dodekadische System, welches hier vollstän­
dig dargestellt ist. Aus dem dodekadischen, findet

oe 
man, durch Abnehmung eines Winkels - , das 

eot ee 
zweyzifrige Gesetz für da§ hendekadische (nzifri- 
ge) Zahlengebaude. Aber durch Anlegung eines 
neuen Winkels oder Gnomons, würde man, für ein 
angenommenes iztes Grundzeichen, das zweyziffrige 
Gesetz für das dreyzehntheilige Zahlengebaude erhalten 
u. f. w. für mehrere Grundzeichen und Zahlensy­
steme. y

2Y.
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29.
Diese figürliche Darstellung der Zahlensyste­

me in und umeinander, zeigt also eine wahre 
Involution. Auch hat Herr Hindenburg diese 
Erscheinung zuerst bey den Untersuchungen über die 
Zahlengebaude wahrgenommen; diese und ähnliche 
Anordnungen (in quadratischen, rectangularen, trian­
gulären, polygonischen, regulären und irregulären, 
Formen), hat er bey seinen Untersuchungen über die 
mechanische Fortschreitung der Zahlen, bey verlangter 
Zahlen - Aufsuchung durch Abzählen nach Fächern 
oder deren Abmessung nach vorgeschriebenen Distan­
zen *)  vielfältig benutzt; den Vortheil, den sie auch 
in der Combinationslehre gewähren können, erkannt, 
und solchen über die gesammte Wissenschaft erstreckt, 
um so mehr, da aus dergleichen Darstellungen, die 
Gesetze der Fortschreitung der Zahlen, nach jedem 
Systeme, in der Ordnung und sprungweise, sogleich 
in die Augen fallen, die er dann zum Grunde 
seiner neuen Combinationslehre gelegt hat, bey wel­
cher gut geordnete Complexionen und Classen wie 

Zahlen wachsen oder abnehmen. Nov. Syst. Perm. tix. 

-5- 26.

Zo.

Der Erfolg davon war in der That außeror­
dentlich. Denn nun erschien die Combinationslehre 

auf 

*) Hindenburgs Beschreibung einer neuen Art
Zahlen durch Abzühlen oder Abmefsen zu fin­
den. Leipz. bey Crufius 1776 mit Kupf. und Beyla­
gen. gr. 8.
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auf einmal in der ursprünglichen Simplicität, die ihr 
als selbständiger Grundwissenschaft zu- 
kommt, aus welcher die Arithmetik und Analysis her­
vorgehen. Die Regeln der so einfachen combi­
natorischen Operationen ließen sich nun sehe 
kurz abfassen, und waren äußerst leicht, leichter als 
die schon zusammengesetztern arithmetischen 
Operationen, die nur bedingte kombinatorische 
sind. Bey jenen nemlich beruht alles auf bloßer 
Zusa mm enste llun g, Ordnung und Versetzung der 
Elemente zu Complexionen; bey diesen hinge­
gen muß zugleich mit auf derselben besondere 

Werthe, Lagen und Beziehungen, wie sie als 
Zahlen auf und in einander wirken sollen, Rück­
sicht genommen werden. Was endlich über alles wich­
tig ist, die ausgedehnteste Anwendung der Combina­
tionslehre auf die Analysis war nun eine natürliche 
und nothwendige Folge einer solchen Umänderung, 
und zog die Erfindung bequemer combinatorischer 
und anderer harmonirender Zeichen (Nov Syst. Perm, 
p. XXXII, — XLIX.) herbey, die gleich geschickt sind, 
die, größtentheils neuen, combinatorischen, einfachen 
und zusammengesetzten, Begriffe (Ebend. p. iv.—xv.) 
kurz und deutlich darzustellen, und zu Lokal--und 
combinatorisch - analytischen Formeln sich 
anordnen zu lassen.

Hierbey ward die Einführung

des Zeigers lindex, indiculus)

(it 2, 3, 4„A . 
b, c, d,.,y ’ G: 2, 3, 4-

unwb
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unentbehrlich; die simpelste Nachweisung, die man 
sich denken kann.

Die von Hindenburg (fnf. Dign. und Nov. Syst. 
Perm.) angewiesenen und mannigfaltig benutzten Vor­
schriften gegebene Dinge

ZI, 2, 3r 4 -- >
\a, b, c, d...

permutiren, combiniren und variiren, 
führen auf dergleichen Involutionen, wovon oben 
schon Proben gegeben sind, und weiter hin etwas 
naher erwogen werden sollen.

3i*
Combinationen überhaupt, mit Wiederholungen.
(Combinationes simpliciter, admiffis repetitionibus).

Aufgabe.

Gegebene Dinge oder Elemente
ZI 2 g 4 5 6 7...A 
\a b c d e f g...

zu combiniren, oder, nach zwey, drey, vier u. s. w. 
verbunden, in gut geordneten Complexionen und Clas­
sen darzuftellen.
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ZA
(»)

b b c d
aa ab ac ad

bb bc bd
'Ä cc cd|

dd
aaa aab aac aad

abb abc abd
ac c acd

add
'e bbb bbc bbd

bcc bcd
bdd

ccc ccd
cdd
ddd

aaaa aaab aaac aaad
'D u. s- W.

a a a a a
a a a a b

U. a a a a c

a a a b ‘T"

a a a b c
a a a 1 c c
a a b b b
a a b b S

f. a a b c G
a a c c c
a b b b b*
a b b b c
a b b c L
a b c c c
a c c c c

W. b b b b b
b b b b c
b b b c 6

u s. w.

Z2.
Erste Auflösung. 1. Die gegebenen Elemente 

setze man als einzelne Dinge (Uniones) in die erste 
Classe 'A.

ii. Der Union a (in za) und allen folgenden, setze 
man a; dann der Union b und allen folgenden, c; 
u. s. w. vor. Das giebt zusammen die Binionen der 
zweyten Combinationsclasse 'BJ

in. Den Binionen in 'B der Ordnung a und aller 
folgenden, se^e man a; denen der Ordnung b und 

aller 
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aller folgenden, setze man b; denen der Ordnung c 
und aller folgenden, setze man c; u. f. w. vor. Das 
giebt zusammen die Ternionen der dritten Combina- 
tionsclasse ZC.

IV. Eben so findet man, durch successives Vorse­
tzen der einzelnen Elemente a,b,c.... (immer von den 
Complexionen der Ordnung anfangend, die mit dem 
vorzuschreibenden Buchstaben gleichnamig ist) die 
Combinationsclassen zd, ze u. s. w. jede folgende aus 
der nächst vorhergehenden, also die rite Classe aus der 

(n — l)ten.

33-

Zweyte Auflösung. I. Die gegebenen ein­

zelnen Elemente (gleichsam als so viel einzelne Ord­
nungen) setze man in die erste Classe ZA.

II. Den Unionen in ZA setze man sämmtlich das 
Element a vor. Das giebt die Ordnung, a; aus wel­
cher man, durch Umtauschung des Vorgesetzten a mit 
b (von der Binion an, wo zuerst zwey verschiedene 
Elemente vorkommen) die Ordnung b; und aus die­
ser, durch Umtauschung des Vorgesetzten b mit c (von 
der Binion an, wo zuerst zwey verschiedene Elemente 
vorkommen) die Ordnung c; und daraus eben so die 
Ordnung d; u. s. w. der Binjonen der zweyten 
Classe zß findet.

III. Eben so findet man:
i) Die Ordnung a der dritten, vierten.... über­

haupt der uten Classe, wenn man den sämmtli­
chen Complexionen der (n — i)ten Classe, a vor­
letzt;

s) Die
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2) Die Ordnungen b,c,d * *.  der nten Classe, aus 
den Ordnungen a,b,c... derselben Classe, wenn 
man in den Complexionen der nächstvorhergehcn- 
den Ordnungen (von da an, wo zuerst die bey­
den Anfangsbuchstaben nicht einerley sondern ver­
schieden sind) in die Stelle des ersten dieser bey­
den Anfangsbuchstaben den nächstfolgenden Ord- 
nungsbuchstaben setzt.

34-

Die Auflösung (32) für die Combinationen ist von der 
ersten Aufl. für die Variationen (20) bloß darin unter­

schieden, daß die Buchstaben b,c,d... hier nicht 
(wie dort) allen Complexionen der vorhergehenden 
Classen für die folgenden vorgesetzt werden. Die Auf­
lösung (33) ist mit der zweyten Aufl. (in 20) was die 
Bestimmung der Ordnung a in jeder Classe anbetrift, 
vollkommen einerley, und weicht nur bey den übrigen 
Ordnungen ab, bey denen nicht alle Complexionen 
der vorhergehenden gebraucht werden. Beyde Auflö- 
nachdem man die figürliche Anordnung bey ihnen so 
oder anders (22) trift, führen auf die Darstellungen 
(3i/ M)

35-
Die Auflösung (32) hat Hindenburg (Nov. Sylt 

Perm. p. xix. io.) aus einer noch allgemeinern aus­
gedrückten (Ebend. 8.) abgeleitet. Die Darstellungen 

(31, »,*)  gehen übrigens wie jene der Variationen 
(20) wie wachsende Zahlen fort, und sind zugleich le- 

xiko-
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xikogravhisch geordnet (Ärch. der Math. H. II. S. 

178. Note).

Z6.
Das Gesetz der Combination, und die Fortschrei- 

tung bey mehrerern Dingen und mehreren Classen, 
fallt, so wie die Involution selbst ben ß und wie sie 
(in 31 bey « hier nicht gezogene) vertikale Linien, 
neben den Endelementen a,b,c,d.... sich zeigt deutlich 
in die Augen. Diese Darstrllungen, geben Veranlas­
sung zu mannigfaltigen Beobachtungen und Folgerun­
gen, in Beziehung auf Anfangs- und Endzifern, ho­
rizontal und vertikal fortschreitende Complexionen, 
Entwickelung folgender Classen aus vorhergehenden, 
folgender Complexionen aus vorhergehenden, in ho­
rizontaler und vertikaler Lage, Anzahl der Comple­
xionen überhaupt und für jede Classe ins besondere, 
für jede beliebige Menge gegebener Dinge u. s. w. 
(infin. Dign. p. I- — 22). Herr Burja findet nach 
seiner Regel (Alg. i Thl. S. 137*  §- 23.) alles voll­
kommen so wie hier (31, *)  bey ihm heißen diese Art 
von Combinationen, mittlere Verwechselungen 

(combinaifons neutres).
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Variationen zu bestimmten Summen, mit Wie­
derholungen.

(Variationes numeri propofiti, admiflis repetitionibus)

37*
Aufgabe.

Die Variationen zu bestimmten Summen, aus 
den Elementen

<'12345 6. 
\a b c d e f.../

in gut geordneten Classen darzuftellen.

SB

5 D

SA

SC

Lexikogr. Complex. 
für 5J

Classen Complex. 
für 7 

e 
ad 
bc 
cb 
da
aac 
abb 
aca 
bab 
bba 
caa 
aaab 
aaba 
abaa 
baaa 
aaaaa

ara a a | a J
a a a ] b

5A u. a a b a
a a c
a b a a
a b b

a c a
a d

f. L
r b a a a

b a b
"B b b a

b c

r c a a
L c b

5»,, d a
e

S 38.
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38.
Auflösung für s7== SA t ’Bf JCf ’Df'E
1, Das Zte Element e setze man, als einzelnes 

Ding, in die erste Classe SA,
II» Die Complexionen der zweyten und aller fol­

genden Classen bestimme man nach ihren Ordnungen:
1) Die Ordnung a der nten Classe zu finden, se­

tze man jeder Complexion der (n — i)ten Classe a vor, 
und vertausche den letzten Buchstaben der Complexion 
mit dem nächst vorhergehenden des Zeigers, mit Ue- 
bergehung derer, die sich mit a endigen. *)

2) Die so gefundene Ordnung a giebt die Ord­
nung b, diese die Ordnung c, u. s. w. derselben 
nten Classe, wenn man successive in den Complexio­
nen der nächstvorhergehenden Ordnung, mit Ueberge- 
hung derer, die sich mit a endigen, den ersten Buch^ 
staben jeder Complexion mit dem nächstfolgenden des 
Zeigers, den letzten hingegen mit dem nächst vorher­
gehenden vertauscht.

III. So findet man aus e in 5A (nach 11, 1) ad, 
und daraus (n, 2) bc, und daraus cb, und daraus 
da, die Ordnungen der zweyten Classe, deren jede 
hier nur aus einer Complexion besteht. Eben so er­
geben sich die Ordnungen mit ihren Complexionen der 
dritten, und übrigen Classen.

39'

Ich habe hinzugesetzt mit Uebergehung derer, 
die sich mit a endigen. Hindenburg hat dieses 
wahrscheinlich ausgelassen, weil bey einer solchen Comr 
plexion es für den letzten Buchstaben kein nachstvorherae- 
hender zu vertauschen giebt. (Der polynomische 
Lehrsatz. S» 177. 34)*
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39-

Die Auflösung (38) ist einerlei mit der (S.258.) 
nur daß hier noch die letzten Buchstaben der Comple- 
xion verändert werden, welches dort nicht nöthig war; 
(auch werden dort keine Übergängen) *).  Man hatte 
auch die Elemente a,b, c... den Complexionen nach 
(S.2Z7.) vorsetzen, und die zugehörige Umtauschung 
des letzten Elements vornehmen können. Dadurch 
aber würde die Auflösung an Simplicität und Leich­
tigkeit etwas verlehren haben, dieselbe auch nicht rein 
kombinatorisch, wie die hier (38) aufgeführte, gebliebey 

seyn.

*) Bey einer Wissenschaft die so neu als diese ist, muß je# 
der der nicht Erfinder davon ist, sich mit aller Behut­
samkeit ausdrücken - td) habe mich daher immer genau 
an die Worte und Ausdrücke des Erfinders gehalten, 
der die Sache gewiß besser als jeder andere Übersicht —- 
ich halte es daher" für Pflicht hier anzuzeigen, daß ich 
was in Clammern steht zugeietzt habe, da es mir noch 
einen charakteristischen Unterschied dünkte.

40.

Auflösung für

’ J = t 7B t ’Ct 70 t ’X 
Die Complexionen zur Summe n werden hier aus 
denen zur Summe (n — 1) auf folgende Art abge­
leitet.

I. Man setze allen einzelnen Complexionen der 
Summe (n—1;, das erste Element derselben mit dem 
nächstfolgenden des Zeigers, und schreibe jede Com- 
plexion, die diese Verlauschung giebt, in ihrer Ord- 

S 2 nu»g. 

1
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nung , 'unter die Complexionen die I schon vorherge- 
geden

4t.
Da bey den Buchftabencomplexionen zu bestimm- 

reu Summen, diese Summen sich auf die Ordnungs­
zahlen beziehen, wie sie im Index oder Zeiger, (37) 
über den Buchstaben stehen: so erhellet deutlich, daß 
wenn man das Element a (oder 1) im ersten Winkel 
(37) setzt, man, nach dem obigen Verfahren (f, II) 
von da auf die Summe 2, und von dieser auf die 
Summe z, u. s. w. auf die Summen 4, 5...11 suc- 
cessive fortschreitet. Diese involutorische Suc­
cession, nach welcher man vorhergehende und 

folgendeWerthe in und um einander schreibt, 
ist gleichwohl mit einer absoluten Independenz 
vollkommen gleichgültig (Arch. der Math. H. III. S. 
324, c.) und so schreibt man nach ihr Summen von 
Classen eben so leicht als einzelne Classen, und umge­
kehrt, oder vielmehr, eins ist mit dem andern zugleich 
gegeben und innigst verbunden.

42.
Damit man den Unterschied zwischen rein und 

nicht rein combinatorisches Verfahren deutlich einse­
hen mag, so will tch hier noch folgende Auflösung 
von der Aufgabe (38) mittheilen.

Aufgabe I). Aus einer gegebenen Variations- 
complexion die nächstfolgende höhere zu schreiben.

Auflösung 1). Ist die letzte oder niedrigste 
Ziffer der gegebenen Complexion größer als 1, so 

ziehe

1
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ziehe man 1 von ihr ab und addire 1 zur folgenden 
Ziffer. Die beyden so veränderten Ziffern in ihren 
Stellen, mit den übrigen, sämmtlich unveränderten, 
geben zusammen Lie verlangte nächst Höhere Comple- 

xion.

So folgen 1114

1123

1132 
1141 auf einander

2) Ist die letzte Ziffer der gegebenen Complexion 
1, oder sind mehrere Ziffern derselben nebst der letz­
ten, hintereinander 1, daß also die Complexion 
sich mit 1 oder 11 oder m oder im u. s. w. en­
diget: so erhöhe man die nächste zweyte Ziffer 
von der 1 in der höchsten Stelle, vorwärts, lasse die 
Ziffern neben der erhöheten linker Hand (wenn es 
noch dergleichen giebt) unverändert, in die Stellen 
aber rechter - Hand derselben setze man durchge- 
hends 1, bis in die letzte Stelle, in die man das 
Complement zur gegebenen Summe setzt, das auch r 
seyn kann.

Auf 1141; auf 12311; auf 512m

folgt 1213; folgt 13112; folgt 521111
u. daraus 611111

3) Giebt 'es aber keine, nächste zweyte Ziffer 

vorwärts von der 1, (wie 'sie 2 bestimmt) so ist die 
gegebene Complexion die letzte ihrer Classe:

So ist in 611111 die Ziffer 6, die erste nach 1, 
zugleich die in der höchsten Stelle, nach welcher es 

v also



278 Hindenburgs Theorie

also keine höhere, und folglich auch lkeine zweyte 

Ziffer vorwärts von i geben kann. Die gegebene 
Comvlexion 611111 ist also die höchste und letzte ih­
rer Classe.

Zusatz. Die erste und niedrigste Comvlexion 
einer Classe, z. B. der Classe k zur Summe n, findet 
man, wenn man (k — 1) Einheiten neben einander 
schreibt und in die letzte oder niedrigste Stelle das 
Complement n — (k — i) = nfi-k zur Sum­
me n setzt. Für k — n ist dies Complement selbst 1, 
und es giebt nur eine, aus lauter Einsen beste­
hende Complexion dieser Classe, die zugleich die letzte 
Classe von allen ist.

Daraus stießt unmittelbar folgende

Aufgabe If. Alle Comp^exionen zur Summe 
n einer verlangten Variationsclasse k, gutgeordnet zu 
schreiben.

Auflösung 1). Man schreibe (nach vorigem 
Zusätze- die erste Complexion der verlangten Classe.

2) Die höheren Complexionen folgere man durch 
Anwendung (von 1 und 2) der Auflösung der vori­
gen Aufgabe 1. bis man (nach 3) auf die höchste und 
letzte Complexion derselben Classe verfallt.

Anmerkung. Jede der beyden Vorschriften 1 
und 2 der Aufgabe I. läßt sich für die Aufgabe II. 
oft mehrmal hintereinander anwenden, so lange näm­
lich die in 1 und 2 festgesetzten Bedingungen vorhan­
den find. Anch dadurch wird die an sich leichte Dar­
stellung noch mehr erleichtert, welches bey großen 
Zahlen, wo der Fall häufiger vorkommt, um so an­
genehmer ist.

Bey-
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Beyspiel. Für n = 7 und k c= 5. 

die Variationscomplexionen für

(J234**.)
zu schreiben.

Diese sind, nach obigem Verfahren

Oder:

IUIZ
11122

1x131
11212

11221

11311

I2II2

I2I2I

I22II

I3III

2III2

2II2I

2I2IT 
22III

3IIII

Anmerkung. Hier ist 31111 die letzte und 
höchste Complexion der zten Classe zur Summe weil es 
hier keine zweyte Ziffer nach der (hier punktieren) 

höchsten 1 giebt. (Aufg. I. g.) Würde man aber statt 

Zimschreiben 031m, so könnte man die Regel (2) wie­
der anwenden, und fände so 111112, die erste und nie­
drigste Complexion der folgenden 6ten Classe, aus 
der letzten und h ö ch st e n Complexion der unmittelbar 
vorhergehenden §ten Classe; aus welcher man, wie vor­
her, die folgenden derselben Classe weiter ableiten kann.

Einen solchen Uebergang nennt Herr Hindenburg 
cle ductionem ex Classe in Classem. Er findet auch, ilt 
seiner Art, bey der in natürlicher Ordnung, nach 
welchem Zahlensystem man will, geschriebenen Zah­
lenreihe statt, wenn man von mziffrigen Zahlen zu 
den (m-j-i)ziffrigen fortschreitet.

So
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So giebt z. B. im dekadischen System die höch- 

m—i
fte mziffrige Zahl 999... wenn man dafür schreibt 
m m
0999die kleinste (msi)ziffrige Zahl 1000...

43*

Von diesem Variationsproblem izu bestimmten 
Summen (37) stehet Hindenburgs erste Auflösung 
(infinit. Dign. p. 129 — 135.) für Summen von Clas­
sen, so wie für einzelne Classen. Die zweyte Auflö­
sung von Hindenburg habe ich hier nach Herrn Mag. 
Töpfer (Comb. Anal. S. 77 — 8o> in (42) mitge­
theilt. Beyde sind leicht und ganz allgemein, aber 
nichts rein combinatorisch, wie die hier,(38,40) beschrie­
benen von denen Hindenburg die letztere zuerst in sei­
nem Programm Terminorum ab infinitinomii dignitati- 
bus Coefficientcs Moivraeanos fequi ordinem lexicogra- 
phicum, ostenditur. p. iv, 2. und im Arch. der Math. 
<H. iv. S. 393, A) in Zahlencomplexionen aufge­
führt hat. Von diesen vier ganz verschiedenen Ver­
fahren geben, das erste Classen aus Classen, das 
zweyte Complexionen aus Complexionen, das drit­
te Ordnungen aus Ordnungen, das vierte Sum- 
menwerthe aus Sümmenwerthen; durchgängig nächst­
folgende aus unmittelbar vorhergehenden. Die 
nähere Betrachtung der kombinatorischen Operationen 
besonders der Involutionen, führt diese Unterschiede 
von selbst herbey. Man vergleiche Arch. der Math. 
H. II. S. 183, 18, I.

44«
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44- >
Die Variationen zu bestimmten Summen, die ich 

bisher nur auf eine Reihe a,b,c,d... (37) bezogen 
habe, können eben so, wie iene (an sich oder über­
haupt, fimpliciter) ciuf mehrere Reihen (24,26) bezogen 
werden; auch hat Hindenburg davon (infin. Dign. §» 
XXVII. p. 1,27 — 145 und Nov. Syft, Perm. p. LXX. 
feg.) häufig Gebrauch gemacht, und solches bey den 
Classenzeichen sowohl, als bey der darstellenden Ent­
wickelung nachgewiesen. Wählt man für die mehrern 
Reihen p,q>r,s den Zeiger, wie in (24), wozu ich itzt 
nicht die Reihe «,s,=t fügen will: so stehen, 

für die Summe 5 oder 5J (37) die Zahlen- und 
Buchftabencomplexionen nebst ihren Classenzeichen und 
den überschriebenen Reihenexponenten p, q, r, s, t, wie 

folget:
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p , P p
qS

e
0—

14 ,qp
♦yAd

23
Bc

32 Cb

r4£
1^3 öAc

122 rqp
slßb

131 ’C öCa

212 6Ab

221 6Ba

siLL 8^5

1112 srqp
$D

AaAb

II2I AakL

I2II AbAa

t2III tsrqp t93<iAa

IIIII 5£ «StctAa

Zuweilen sind auch einige der Reihen 'p,q,r,s,t. * *.<  
Glied für Glied einander gleich. Wäre z. B. p = q; 
s = fso käme hier:

p p2 rp2 srp2 srp2 
SJ = ’A f f !C f SD f 5E

45*
Für eben die Reihen p,q,r,s,t (44), eben so ge- 

braucht, aber auf yJT (in 37) angewendet, fände 

man die Zahlen- und Buchftabencomplerionen, wie 
folget:

t
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I I ’l « A A | a

I 1 11 2 « 9f a 1 b
I 1 2 1 A B* a
I 1 2 a> A c
I 2 1 1 ct b a
I 2 2 tu­ B b
T 3 1 et, c a
I 4 & d
2 I 1 1 B a A a
2 I 2 B a b
2 2 1 B B a
2 3 B c

3 1 1 k A a
4 1 c b

5 D a
e

Hier stehen nemlich in der ersten Buchstabeneom- 
plexion die Anfangsbuchstaben der Alphabete für die 
Reihen ...t,s.r,q,p, in ihrer Ordnung; jeder (nach 40,1) 
vorzuschreibende erste Buchstabe, wird aus dem 
nächstfolgenden, noch nicht gebrauchten, Alphabete 
genommen, jeder (nach 40, II) durch Umtauschung zu- 
zusetzende hingegen, aus dem Alphabete, wohin der 
auszutaufchende gehört. Das nennt Hindenburg, die 
Reihen p,q,r,s,t.... hier eben so gebrauchen, wie in 
(37). Die Buchstabencomplexionen kommen hier 
gleichwohl mit den dortigen nicht in dem Umstände 
überein, daß in einerley Stellen Buchstaben desselben 
Alphabets durchgängig verkämen. Mit einem Wor-- 
te, die Zahlencomplexionen in (44,45) find bloß der 
Form, die Buchstabencomplexionen (Ebendas.) hinge­

gen, 
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gen, der Form und Materie nach verschieden. Von 
beyder Gebrauch und Anwendung, in der Folge.

Combinationen zu bestimmten Summen, mit Wie­
derholungen.

(Combinationes numeri propositi, admiflis repetitionibus)

. 46. 

Aufgabe.

Die Comblnationen zu bestimmten Summen, aus 
den Elementen

<1 2 3 4 5 6 7... A
\a b c d e k §....>

in gutgeordneten Complexionen und Folgen derselben 

darzuftellen.

Elast



’B

r

’D

E
’ ’F

’G

’C

Llassen-Complex. 
für’J

’A
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?(ßr g

aaaaaaä
baaaaa

5E) bbaaa
bbba
caaaa 
cbaa 
cbb
cca

____ daaa
2D dbl

dc

eaa
eb

’3E&
’G-S

g_ 
af 
bs 
cd
aae 
abd. j 
acc 
bbc 
aaad 
aabc 
abbb 
aaaac 
aaabb 
aaaaab 
aaaaaaa

Lexikographische Complexion 
f“r "J

47-
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47.
Auflösung für
= fA f 7B f ’C f ’D f 7E f ’F f

I. Das 7te Element g setze man, als einzelnes 
Ding, in die erste Classe "A

II. Die Complexionen der zweyten und aller fol­
genden Classen bestimme man nach ihren Ordnungen:

1) Die Ordnung a der nten Classe zu finden, setze 
man jeder Complexion der (n — i)ten Classe (mit 
Uebergehung derer, die am Ende zwey oder mehr 
gleiche Elemente haben) a vor, und vertausche den 
letzten Buchstaben der'Complexion mit dem nachftvor- 
hergehenden des Zeigers.

2) Die so gefundene Ordnung a giebt die Ordunng 

b, diese die Ordnung c u. s. w." derselben Men Classe 
wenn man successive in den Complexionen der nächst- 
vorhergehenden Ordnung (mit Uebergehung derjeni­
gen Complexionen, welche entweder zwey oder mehr 
gleiche Anfangs- oder zwey oder mehr gleiche 
Endelemente, eins oder beydes zusammen, haben) 
den ersten Buchstaben jeder Complexion mit dem 
nächstfolgenden, den letzten hingegen mit dem nächst­
folgenden, den letzten hingegen mit dem nächftvor- 
hergehenden (in beyden Fällen, des Zeigers nicht 
der Complexion) vertauscht.

III. So findet man aus g in 7a (nach 11. 1) af, 
und daraus (IL 2.) be, und daraus cd (weiter darf 
man hier nicht gehen, weil die Binionen dc, eb, fa 
nicht gutgeordnet wären, und auch schon durch die 
vorhergehenden dargestellt sind) die Ordnungen der 

zwey-
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zweyten Classe, deren jede hier nur aus einer Com- 
plexion besteht. Eben so ergeben sich hie Ordnungen 
mit ihren Complexionen der dritten und übrigen 
Classen.

48-
Auflösung für

’Jr'At ’JB t ’C + "G- 

die Complexionen zur Summe n werden hier aus de­
nen zur Summe (n — 1), auf folgende Art abge­
leitet:

ir. Man setze allen einzelnen Complexionen der 
Summe (n — 1) das Element a vor.

II. Man vertausche in den Complexionen der 
Summe n — 1, (mit Uebergehung derer, welä't zwey 
oder mehr gleiche Anfangselemente haben) das er­
ste Element mit dem nächstfolgenden höhern Elemente 
des Zeigers, und schreibe jede Complexion, die diese 
Vertauschung giebt, in ihrer Ordnung, unter die 
Complexionen die 1 schon vorher gegeben hat.

49-
Auflösung für

A t ’2B t’Ct ’2D t ’M t ’JE*  t "Gr
11. Man setze allen einzelnen Complexionen der 

nachstvorhergehenden Summe <n — 1), das Element 
a vor.

11. Man vertausche (aber nur in denjenigen Com­
plexionen der Summe (n — 1), bey denen die bey­
den ersten Elemente nicht einerlei, sondern verschie- 
den sind) das.erste Element solcher Complexionen, 

' . mit
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mit dem nächstfolgenden des Zeigers, und füge sol­
chem die übrigen Elemente der Complexion unverän­

dert bey.
IU. Die Complexionen (die 1 und II geben) mi­

sche man so unter einander, daß man zu jeder Com­
plexion aus I die aus II setzt, wenn es dergleichen 
giebt. Giebt es keine in n (wenn nemlich der Com­
plexion zur Summe (n — i) erste beyde Elemente 
nicht verschieden sind) so setzt man bloß die aus I, 
und geht gleich zur folgenden Complexion der Sum­
me (n — i) fort.

50.

Das Combinationsproblem zu bestimmten Sum- 
?' men nach Classen (47), war das erste auf welches 

Hindenburg verfiel, und das ihm Gelegenheit gab, 
in der Folge weiter zu gehen. Seine erste Auflösung 
davon (infin. Dign. §. Xit p. 73 — 91.) für Sum­
men von Classen, so wie für einzelne Classen. Seine 
2te Auflösung ist folgende (Topf. comb. Anal. S. 
80 — 90).

Combinatorische Zusammensetzung, für Zahlencom- 
plexionen zu bestimmten Summen, aus den Elemen­
ten i, 2, Z, 4, 5....

Aufgabe I. Aus einer gegebenen Combinations- 
complexion die nächstfolgende höhere zu schreiben.

Auflösung. 1) Ist die letzte oder niedrig­
ste Ziffer der gegebenen Complexion um mehr als 
1 größer als die nächstfolgend,e, so ziehe man 
1 von der letzten Ziffer ab, und addire I zur vorletz­
ten Ziffer. Die beyddn so veränderten Ziffern in ih­

ren 
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ren Stellen mit den übrigen, sämmtlich unveränderten, 
geben zusammcn.dieverlangte nächsthöhere Complexion.

So folgen 11137; imgleichcn 11227

und 11146; und 11236
und 11155und 11245

aufeinander; aus jeder vorhergehenden Complexion,
die nächstfolgende höhere.

2) Ist die letzte Ziffer der gegebenen Complexion 
gleich groß oder nur um 1 größer, als die 
vorletzte, so gehe man weiter zu den nächstfolgen- 
Ziffern fort, und suche die erste Ziffer unter ihnen, 

die um mehr als 1 kleiner ist als die letzte. 
Diese kleinere Ziffer erhöhe man um 1 in ihrer 
Stelle, lasse die Ziffern neben der erhöheten linker 
Hand (wenn es auch dergleichen giebt) unverändert, 
in die Stelle aber rechter Hand der Erhöheten, setze 
man lauter (wie sie die Erhöhung gegeben) g.eiche 
Ziffern, bis auf die letzte oder niedrigste Stelle, in 
die man das Complement zur gegebenen Summe setzt, 
das größer oder gleich groß mit der vorletzten Ziffer 
seyn, nie aber kleiner werden kann.

Auf 12244

folgt 12334 auf 22234

darauf 13333 folgt 22333 
und darauf 22225;

3) Hat die gegebene Complexion keine Ziffer, die. 
um mehr als 1 kleiner ist als die letzte, so ist 
sie die letzte und höchste Complexion ihrer Classe.

L Dies
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Dies ist der Fall bey der vorigen letzten Compler 

xion 22333, nach welcher also keine weiter in der 
Classe zu welcher sie gehört, folgen kann.

Zusatz. Die erste und niedrigste Comple- 
xion einer Classe, z. B. der Classe k zur Summe n, 
ist mit der ersten Complexion für Variationen, 
für einerlen n und k, vollkommen gleich, und wird 
'also eben so (wie in dem obigen Zusätze) bestimmt. 
Für k=n giebt es auch hier nur eine einzige aus 
lauter Einsen bestehende Complexion der letzten 
Classe.

Daraus fließt unmittelbar folgende.
Aufgabe n. Alle Complexionen zur Summen 

einer angegebenen Combinationsclasse k, gutgeordnet, 

zu schreiben.
Auflösung. 1) Man schreibe (nach vorherge­

hendem Zusätze) die erste Complexion der verlangten 
Classe.

2) Die folgenden höhern Complexionen folgere 
man durch Anwendung (von 1 und 2) der Auflösung 
-er vorstehenden Aufgabe L bis man (nach 3) ouf 
die höchste und letzte Complexion der gegebenen Classe 
verfällt.

Anmerkung. Jede der beyden Vorschriften 1 
und 2 der Aufgabe I. laßt sich für die Aufgabe II. 
oft mehrmal hintereinander anwenden, so lange nem- 
lich die in 1 und 2 festgesetzten Bedingungen vorhan­
den sind. Auch dadurch wird die an sich leichte Dar­
stellung noch mehr erleichtert, welches bey großen 
Zahlen, wo der Fall häufiger verkommt, um so an­
genehmer ist.

B e t);
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Beyspi eil. Für n = 13 und k = 5; oder die 

> *’E >
Complexion für f ) zu schreiben.

xJ/ 2, 3, 4 ...
Diese find nach obiger Vorschrift^

11119

11128

1113s

11146

11155

11227

11236

11245

H335

11344

12226
. -

12235

I2244

12334

13333

22225

22234

22333
Anmerkung i. Hier ist 22333 die letzte und 

höchste Complexion der jten Classe zur Summe 13, 
weil es in ihr keine Ziffer giebt, die um mehr 
als 1 kleiner ist, als die letzte Ziffer 3. Würde 

man aber statt 22333 schreiben 02233z, so könnte 
man die Regel (2) wieder anweNden, und fände so 
111118 die erste und niedrigste Complexion der 
folgenden 6ten Classe, aus der letzten und höchsten 
Complexion der unmittelbar vorhergehenden zten 
Classe. Eine deductio ex Classe in Claflem, (wie die 
obige S. 279).

Würde vorgeschrieben, daß die Zahl 13 in 5 Theile 
zertheilt werden sollte, die sich aus den Ziffern 
i, 2, 3, 4, und nur diesen allein, (keinen größern) 
schreiben lassen. So Übersicht man leicht, daß von 
obigen 18 dargestellten Comptexionen, nur 6 brauch­
bar sind, die übrigen sind für diese Aufgabe umsonst 
gesucht. Hindenburg unterscheidet in folgen Fällen 

X 2 Cera*  
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Complexiones utiles unb inutiles (Nov. Syst. Comb. p 
X. 37).

Wie dergleichen Complexionen, unabhängig von 
den übrigen, die man nicht braucht, sich finden lassen, 
wird folgendes zeigen»

5t*

E-ntwickelüng der Zahlencomplexion in 
50, wenn statt der dortigen unbestimmten 
Elementenreihe 1, 2, 3,4, 5... eine bestimmte 
1, 2, 3... r ... in — i, m gegeben ist; wo r je­
des Element < m — 1 bedeutet, und daS 
höchste Element m < n -J*  1 — k seyn soll*)

Aufgabe 1. Die erste Complexion zur Sum­
me n für die Combinationsclasse k, aus den Elemen­
ten 1, 2, 3... r... m — i, m zu finden; weUN 
ni < n f 1 — k.

Auflösung. Man nehme n — k -- R, so ist 
entweder

■1) Der Rest R == t eine kleinere Zahl als m—$
2) oder es ist R = g (m — 1), ein vielfaches von 

m — 1,
3) oder es ist R = q (m *— 1) f r, ein Vielfa­

ches von m — 1, und eine kleinere Zahl.
Für

*) Man muß hier und in der Folge die Reihe i, 2, 3, 
4, 5... von der 1, 2, 3, 4;..'/. m wohl unterschei­
den, weil die letztere auf ein bestimmtes Zahlensystem 
sich bezieht, dessen höchste Ziffer m ist. Da

m < n *J*  1 — k, 
m — 1 < n — k

also auch m — 1 < R; daher scheint eö, als wen» 
R nicht gleich r kleiner als m — 1 gesetzt werden darf. 
Die Aufl. zählt die möglichen Fälle auch fürm>oder< 
Pder =? n f 1 — k. Seite 29^ wird man aber 
hrn, daß die Annahme m < nf i-k gnügt.
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Für i setze man in die letzte und niedrigste Stelle 

der zu bestimmenden Complexion die Zahl if r, und 
in die übrigen (k — i) Stellen, lauter Einsen.

Für 2 setze man das Höchste Element m von der 
letzten Stelle an so oft nebeneinander, als g Einhei­
ten hat. Werden dadurch noch nicht alle Stellen be­
setzt, so fülle man die übrigen mit Einsen aus.

Für 3 setze man eben so das Element m von deo 
letzten Stelle an gmal hintereinander, schreibe dann 
die Zahl i t r daneben, und fülle wenn noch leere 
Stellen vorhanden sind, die übrigen mit Einsen aus.

Zusatz., Soll die Aufgabe möglich seyn: so darf 
n nicht kleiner alsk, aber auch nicht größer als 
mk seyn. Denn für n = k bestände die Complexion 
aus lauter Einsen, als kleinsten, für n = mk aus 
lauter men, als größten Elementen. Dieß gäbe also 
die kleinste und größte Complexion von allen, dig 
sich aus k Zahlen der Reihe i, 2,3... m schreiben las­
sen, als Grenzen der übrigen dazwischen fallenden.

Exempel. Für 1,2,3,4,5,6, (wo also m ---- 6) 
soll man die erste Complexion r'n -der Classe k = g 
suchen; und zwar

' 1) zur Summe n = u.
Hier wäre 11 — 8 = R. = 3. Da nun 3 < 5,^ 
so ist die gesuchte Complexion 11111114.

2) Zur Summe n = 28.
Hier wäre 28 — 8 = R == 20. Da nun m—t 
=5, so ist 20. d. i. g (m —1)=4.5. also q=4» 
und die erste Complexion ist 11116666.

3) Zur Summe n e 40.

Hier
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Hiev wäre 4o-7 8 = R = 32. Da nimm —1 = 5, 
so ist 32 d, i. q(m—- i)tr = 6.5t2z also q = 6 
und r---2. Also ist ifr = 3; und die.erste Com- 
plexion 13666666*

4) Die möglichst kleinste Complexion wäre 
11111111 für n~'.

Die möglichst größte Complexion wäre 
66666666 für n.= mk—48.

Dieß wären also die Grenzen der möglichen £onv 
plexionen von beyden Seiten.

Aufgabe IL Aus einer gegebenen Combina- 
tzionscomplexion die nächstfolgende höhere zu schreiben. 
Die Reihe sey wieder 1,2,3,... m, wie sie Aufgabe i. 
hestimmt,

Auflösung, 1) Man suche von der letzten oder 
niedrigsten Stelle der gegebenen Complexion 
vorwärtsgehend die erste Ziffer, die um mehr 
als 1 kleiner ist, als die letzte, Diese klei­
nere Ziffer erhöhe man um 1 in ihrer Stelle, 
lasse die Ziffern neben der Erhöhten linker Hand, 
wenn es noch dergleichen giebt, unverändert, in 

den übrigen Stellen aber rechter Hand der Er­
höhten setze man (wie sie die Erhöhung gegeben 
hat) lauter gleiche Ziffern,

?) Betragen die Ziffern der so (nach 1) bestimmten 
Complexion inihrer Summe so viel als die 
Summe n der gegebenen Complexion, so hat 
man die verlangte nächstfolgende Complexion ge­
funden.

22224 giebt 12233; und 2334 giebt 3333.

3) Ge-
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3) Geben die Ziffern (nach i) in ihrer Summe 
weniger als n so vercheile man den Rest auf die 
letzte und folgenden Ziffern vorwärts, so weit er 
zureicht, dergestalt, daß die niedrigern Stellen 
zuerst mit den höhern Ziffern versehen werden; 
welches geschieht, wenn man von dem Reste zu 
den Ziffern der niedrigsten und successive höhern 
Stellen nach und nach so viel addirt, als nur 
immer geschehen kann, um die höchsten Ziffern 
der Reihe zu erreichen, ohne die Summe n zu 
übersteigert.

So gäbe die Complexion 155556 nach den 
verschiedenen Werthen für m folgende nächst hö­
here Complexionen.

222222 s 222222 j 222222 j rc.
34441_ _ _ _ _ 555 I 3661 rc.

2256661 2227771 222588!
für m — 61 für m = 71 für m — 8> rc.

4) Hat die gegebene Complexion mehrere größte 
Ziffern der Reihe von der letzten Stelle an hin-

- tereinander, so kann man als eine Abkür­
zung (denn sonst gelten auch hier die gegebenen 
Vorschriften 1,2,3, wie in anderen Fallen) hier 
die erste Ziffer die um mehr als 1 kleiner 
ist, als die h ö ch st e der größten Ziffern, suchen, und 
die durch die Erhöhung der gefundenen kleinern 
bestimmten gleichen Ziffern nur bis in diese 
höchste Stelle schreiben, und weiter mit diesen 
nach 1 bis 3 verfahren; wobey also die übrigen nach 
der höchsten größten weiter folgenden Ziffern, 
bis in die letzte Stelle, unverändert bleiben, eben

, sv 
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so wie die über der Erhöheten vorwärts liegen­
den Ziffern.

So giebt die Complexion 225606

(nach No. 3)(nach No. 4)
233366

13
233333

1333 
234666.234666

für einerley Werth von m=6, wie sich von selbst 
versteht, dieselbe nächstfolgende Complexion.

5) Ha; die gegebene Complexion keine Ziffer, die um 
mehr a'ls 1 kleiner ist als die letzte, so ist 
siedle letzte und höchste Complexion ihrer Classe: 

wie 233; Z344; 44455; st w:
Aus I. und II. fließt sogleich die

in. Aufgabe. Alle Complexionen zur Summe 
ti für die Combinationsclasse k gutgeordnet, aus den 
Elementen wenn m < n f 1 — k, zu
schreiben.

Auflösung. 1) Man schreibe (nach der Aufgabe 
l.) die erste Complexion der verlangten Classe.

2) Die folgenden höheren Complexionen folgere 
man durch Anwendung von (1 bis 4) der Auflö­
sung der Aufgabe II. bis man (nach 5.) auf -die 
höchste und letzte Complexion derselben Classe 
verfallt.

Anmerkung. Man kann wenn n keine große 
Zahl ist, was man (nach 3 und 4 der Auflösung in 
Aufgabe II.) zu addiren hat, leicht übersehen, ohne 
erst die Zahlen unter die zugehörigen Ziffern unter­
zusetzen, welches das Verfahren abkürzt und er­
leichtert.

Bey-
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Beyspiel. Man soll die Complexionen für

"E
(I 2 3 4) 

suchen; wo also n --- 13; K---5, und m = 4*  Diese 
sind nach obigen Vorschriften, folgende sechs:

n 344

12244

12334 
13333*  

22234 

22333
Die Punktirung für jdie erste und zweyte Com- 

plexion, die mehr als eine größte Ziffer, nemüd)4, 
am Ende haben, ist naä) Auflösung für Aufgabe JL 
4. die Punktirung der übr'gen vier Complexionen aber/ 
naä) Auflösung für Aufgabe 11. 3. geschehen.

Die Complexionen im vorhergehenden Beyspiel 
sind auf dem kürzesten Wege und unabhängig von 
den oben (50) gesuchten gefunden worden, welches 
ungleich kürzer und bequemer ist, als wenn man die 
Complexionen wie sie die unbestimmte Reihe 1.2.
3.4....  giebt (zoAufg. IL) entwickelt, und daraus 
die zur bestimmten Reihe 1.2.3.4 gehörigen aus le­
sen wollte. Die Menge beyder ist um so mehr von 
einander verschieden^ je größer n und je kleiner m ist. 
Für n = i5/ k = 5, und m c= 4, müßte man schon 
3° Eomplexionen darftcllen, um daraus die 5 brauch­

baren: 12444; 13344; 22344; 23334; 33333; auszu- 
lesen, und so ungleich mehrere für größere Unter­
schiede von n und m/

H ier
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Hier zeigt sich zugleich der Unterschied beyder Ausdrücke. .
”E a,E

, « und
(l, 2, Z, 4...) (1,2, 3, 4)

sehr deutlich, und wie sie von
C rjE e *’E

Zi » 3 4...X Unt> si 2 3 4\ 
V bcd..J V b cd/

verschieden sind.
Daß die Aufgabe über die Complexionen zu be­

stimmten Summen aus der Reihe der Zahlen in na­
türlicher Ordnung von 1 an, in (50) und (51) voll­
ständig gelößt sey, erhellet folgendergeftalt. Die 
höchste Zahl die in den Complexionen der Classe k 
Vorkommen kann, ist n f 1 —- k. Reihen also die 
auch größern Zahlen enthalten, wie die unbestimmt 
fortgehende 1,2,3... oder jede andere deren Endzahl 
m>n-j-i—k. wäre, find mit der, deren Endzahl 
n f 1 — k ist, in so fern gleichgültig, weil von den 
größern Zahlen jener Reihen in den Complexionen 
der Classe k keine verkommt. Dahin gehn die Vor­
schriften in (50). Ist aber die bestimmte Reihe 1,2,
3...M,  und m<nf i—k gegeben; so kommen immer 
weniger und weniger Complexionen in die Classe k, 
je kleiner m ist. Da hingehen die Vorschriften in (51).

Auch erhellet zugleich, warum Herr Hindenburg 
für die Auflösung der Aufgabe, wo er alle mögliche 
Complexionen aller Classen zu finden anweiset, die 
Reihe 1,2,3,4...n annimmt. Denn in der ersten 
Classe kommt n selbst, jn der zweyten n—-1, in 
der dritten n — 2 u. s. w. als höchstes Element vor, 
und die nte oder letzte Classe besteht aus lauter 
Ein sen.

' Eben
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Eben fo hat Herr Hindenburg auch die Varia- 
tionscomplexionen in (42) auf eine bestimmte Rei­
he i,2,Z/4... m bezogen. Von dergleichen beschrank­
ten Variationscomplexionen und den Regeln ihrer 
Darstellung, so wie überhaupt die Anwendung auf 
die allgemeine Progression a, af d, afad, a t Zd &c. 
wo das Verfahren dafür dieselben, nur allgemeiner 
ausgedrückten Vorschriften befolgt, werde ich an ei­
nem andern Orte handeln.

Wenn auch schon die Regeln, der hier in (42,5041.51) 
vorgetragenen Aufgaben, in der Anwendung nicht 
schwer zu befolgen sind, sy muß man sie doch, um 
sie sicher und ohne Gefahr zu fehlen, anwenden zu 
können, nach ihrem ganzen Umfange und mit der nö­
thigen Präcision dem Leser vorlegen.

Man wird diese Vorschriften überall mit Nutzen 
befolgen, wo man die Complexionen einzelner Clas­
sen braucht. Da aber, wo man alle Classen haben 
muß, sind jene andern Hindenbürgischen Regeln, 
nach denen man Complexionen folgender Classen 
aus Complexionen na chsrvorhergeh ender be­
stimmt, doch noch leichter. Denn diese setzen bloß 
die successive Zerföllung einer gegebenen Zahl in zwey 
Theile voraus; wobey also alle vorgängige Verglei- 
chung der Ziffern oder Zahlen, einzelner Comple­
xionen, alles Aufmerken auf ein Complement aus 
mehrern Ziffern oder einen Rest, ganz wegfällr; wie 
bey den hier vorgetragenen Auflösungen der Aufga­
ben (in 42, 50,51), zuweilen nöthig ist.

Dieses, und ähnliche combinatorische Verfahren, 
die nach den Hindenbürgischen Vorschriften, die ge­

rn ei- 
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meinen arithmetischen Operationen an Leichtigkeit 
noch übertreffen, sind in der combinatorischen Analy- 
tik Hülfsmittel geworden, die größten Schwierigkei­
ten zu übersteigen, und den Erfolg der verwickelsten 
Substitutionen zu übersehen, die auf keinem andern 
Wege zu bewältigen waren, und welche auch der ent­
schlossenste Rechner aufZugeben sich oft genöthiget 
sahe.

Z2.

Beyde Austdsungen (nemlich in Infin. Dign.
p. 73 — 9i. und die hier in 51 mitgetheilten) sind 
leicht und ganz allgemein, aber nicht rein - combinato- 
risch, wie die in (47,48,49). Die Auflösung (48) hat 
Hindenburg zuerst in dem (S. 280) genannten Pro­
gramm, und nachher im Arch. d. Math. (H. 1V. S. 
Z92,93.)vorgelegt; die(in49)ift dieBoseoviehische 
(Edcndas. ©. 405.) Auch hier werden, wie bet) den 
ähnlichen Verfahren für die Aufgabe (37) verschie­
dentlich , Classen aus Classen, oder Complexionen aus 
Complexionen, oder Ordnungen aus Ordnungen, oder 
endlich Smnmenwerthe aus Summenwerthen, durch­
gängig nächstfolgende aus unmittelbar vorhergehen­
den, abgeleitet und rein - kombinatorisch entwickelt.

53*
Gewöhnlich hat man bey Entwickelung und Dar- 

ftellung der Combinatienselaffen nur auf eine Reihe 
a,b,c,d....= p zu sehen, und diese wird im Zeiger 
angegeben, so, daß es keiner weitem Nachweisung 
bey den Classen selbst bedarf.

Für
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Für die Fälle hingegen, wo die Combination^- 

classen in der Formel, die das Resultat einer Auf­
gabe enthalt/ sich auf mehrere Reihen p,q,r,s... (24) 
beziehen, müssen diese Zeichen, als Reihenexponen- 
ten, über die Classenzeichcn gesetzt werden:

p p q q
»a, «ß....wA, “ß . ... u. s. w. bei) den übrigen 
(No'V. ^yst. Perm. p. XLV. 2i)t Zuweilen kommen 

P qp rqp
auch nA, nß, »c... vor.

Classen außer der -Ordnung, für Variationen und 
Combinationen zu bestimmten Summen, mit 

Wiederholungen.
54.

Classen zu bestimmten Summen lassen sich eben 
so leicht außer der Ordnung geben, wie bey Varia 
tionen und Combinationen an sich, und ihre figürli­
che Anordnung zeigt gleichfalls eine kombinatorische 
Involution, die hier durch Winkel bemerklich gemacht 
werden soll.

55-
Auf gab e.

Die Elemente seyn, wie vorher, 
✓*1234567  8..A 
V b c d e f g h...y

Man soll die vierte Variationsclasse M 
Summe 7 aus a,b,c,d und die fünfte Com binar 
t i 0 ns c la sse zur Summe 12 aus a)b,c,d)e,fJg,h dar. 
stellen.
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b c a a 2 3 I i
t a a b Z II 2
c a b a 3121
c b a a 3211
«iaaa 4111

56.
AuflösrMg für die Combinationsclasse "D

I. Man setze d, das höchste der gegebenen Elemente 
als ein einzelnes Ding, im Winkel.

n. Daneben setze man das erste Ding a. Das 
giebt ad, die Ordnung a der Dinge a,d. Aus der 
Ordnung a findet man (38. n, 2) die Ordnung b, 
und daraus die Ordnung c, und daraus die Ordnung 
d der Simonen ab,bc^b;da.

III.
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III. Den einzelnen Vinionen in II. setze man a 

vor. Das giebt die Ordnung a der Ternionen, und 
daraus findet man weiter (nach 38, IL 2) Die Ord­
nung b und daraus die Ordnung c und daraus die 

Ordnung d der zugehörigen Ternionen.
IV. Eben so geht man zu den Quaternionen für 

7D fort, und so auch zu den Verbindungen von 
mehr als vier Dingen, für spatere Classen; alles wie 

in (38), nur mit dem einzigen Unterschiede, daß 
man bey der Versetzung von a (bey Bestimmung 
der Ordnung a) das letzte Element der Complexion 
hier nicht (wie dort) mit den nachstvorhergehenden 

Zeigerelement vertauscht; Wohl aber in den folgen^ 
den Ordnungen b.c...'

57-
Auflösung für die Combinationsclaffe “E.
I. Man setze h, das höchste der gegebenen Ele­

mente, als ein einzelnes Ding, im Winkel.
II. Daneben setze man das erste Ding a. Das 

giebt ah, die Ordnung a der Dinge a,h. Aus her 
Ordnung a findet man (47, 11. 2)
die Ordnung b, und daraus

— — — d der Binionett ah,bg,cf,de.
in. und IV. Das Verfahren für den Fortgang 

ist hier eben so, wir in (in. iv.); nur daß hier 
(47) statt des dortigen (38) zu citiren. Auch wird 
bey der Versetzung von a das letzte Element nicht 
mit dem nachstvorhergehenden vertauscht, wohl aber 
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in den folgenden Ordnungen l>, c... Die Darstel­
lung für ‘D und “E (in 55) involutorisch zu 
machen, beobachtet man, beym Schreiben der Ord­
nungen a,b,c,». die Vorschrift r.22).

58.
Von der großen Mannigfaltigkeit und leichten Um­

wandlung combinatorischer Formen, findet man viele 
Beyspiele int Arch. der Math, wovon ich hier nur 
(H. I. S. 31 — 43 und H. ir. S. r§3 — 192) an­
führen will. Hier sind noch ein Paar andere für I0D

(0 <f3) <y) (^)

ni|7 a’7 ooo|6

11I26 a226 00 15 - a?5

11 35 ;35 co 24 24

II144 44 OO 33 3£.
' I 225 a1 225 0 114 a1114

1 234 2 34 0 123 123

1 333 333 0 222 222
I2224 a° 2224 |III3 a’1113

4223 z 2233 j 1122 1122*

/I 2 3 4 5 6 7\ /o 1 2 3 4 5 6")
\a b c d e f g) (a b c d e f g/

59-
* Bey den hier gebrauchten Zahleneomplexionen 

fallen die in Winkeln ein geschloßenen Summen so­
gleich deutlich ins Auge. Die a’ a’ a1 deuten hier 
bloße Nebeneinandersiellungm von a an, nach der 
beygefügten Zahl (diese Zahlen sind nemlich hier 

feint
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keine Potenz- sondernWiederholungsexponeu­
ren) und a° zeigt, daß kein a weiter in der Verbin­
dung verkömmt. Man erhält 7 aus « wenn man 
von jeder Zahl in » Eins abzieht, wodurch also 

2, 3
b, c abgeän­

dert wird. Hier hat man nun die Zerlegung einer 
gegebenen Classe in Summen von Classen (daS 
Umgekehrte von zr ß mit dem Unterschiede daß 

I0D = a5 ’A f a“ e3 f a*  ’C f a° XOD 
s2z 3, 4, 5, 6, 71
Lbj c, d, e, f, gj

und *°D  = a3 CA t ae 6B fa’ eC f ’ ffD

<1 2 3 4 S 6\ 
\b e d e f g/ 

jenes bey »iß dieses bei 7, Die st e i g e n d e n Sum­
men 7/ 8, 9/ 10 der Classen nach dem ersten Zeiger, 
werden also auf eine und dieselbe (kleinere) Sum­
me 6, durch den zweiten Zeiger reducirt, und so 
alles in das gewöhnliche Gleis eingeleitet.

Das wird zugleich das (infin. Dignit. p. i4r, I42> 
in der Note und (Nov. Syst. Perm, p, XXII, 18) vorr 
Variationen Beigebrachte weiter aufklären. Von Um­
änderung der Formen durch Zu setzen oder Abzie­
hen gewißer Zahlen (wie hier der Eins) Arch. der 
Math. Heft I. S. 41, 42. Von der Zerfallung ein­
zelner höherer Combinationsklassen in Summen aus 
niedrigern, mit Veränderung des Zeigers, Noy, Syft, 
Perm. p. Lv. Lvi. Das dortige n ist hier 6.

60.
Bey Classen von vielen Complexionen kann man 

um die Colonne nicht zu lang zu machen, die einzel- 

U nen 
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uen Ordnungen derselben neben einander setzen, auch 
zur Verkürzung, wenn man will, sich der Weder - 
holungsexponenten bei b, c, 6... (eben so, wie in

59 bei a) bedienen, die sich bei der Ableitung der 
Ordnungen aus einander (47, II. 2) von selbst er­

geben.
Die erste Complexionn ist x,e ist uil 11 (nach 

58, ti) und 000010 (nach 58, 7). Das giebt
’5E = a*  X0A f a3 ,oß f a’ IÖC ch ax XCD f a° ,e£

Die Zahlencomplexionen von dem er;

a’

b4g 
b3cf 
b’de 
bVe 
b2cd3 
bc’d 
c$

,3E nach

b3h -j- a°
b2cg 
bMf 
b2ee 
bc2f 
bcde 
bd3 
c5e 
c’d2

ri, 2, 3... 9/ 1®/ 11
La, b, c...i, k, 1

nnd daraus folgt (der erste Zeiger gilt für ”E) 
a4

"j k-l, 2, Z...8, 9/ 
—1 !_b, C) d • •. i, kj 1 -J

IJE c=

1 t a= b$i + a*
bch

bk bdg
ci bet
dh c2g
eg cdi
P ce*

d'e

steil Zeiger, findet man (Infi. Dig. p. 80, 81).
Weil hier die Wiederholungen von a (als Er­

gänzung der Dimensionen in den einzelnen Ordnun­
gen) im Voraus votgeschrieben werden, so kann a, 
und mithin anch sein Zahlenwerth o, im zweiten 
Zeiger ganz übergegangen werden. Ein 2 Beyspiel 
ähnlicher Wiederholungen eines Buchstabens (b wie 

hier a) findet man (infin. Dign. p. 41) bei Combina­
tionen an sich (fimpiiciter). Man vergleiche die erste 
Tafel (Ebend. p. 157).

6r.



der Combmatorischen Analytik.

6r.
Man kann auch nach dem (infin. i)ign. p. 26.) 

gegebenen Beyspiele, außer den Wiederholungen von 
a noch die Verbindungen von b, c, d, «... von den 
übrigen absondern. Die Ableitung der Ordnungen 
auseinander (47,11.) führt auch hier unmittelbar darr 
auf; und so kommt:1 i* a3 b bi a1 bb bh t a° bbb bg

bk ch C? cf
ci dg df de
dh es ee —

— 1 bbc ce
c Cg bc cf dd

tt df de
ee bd dd bcc cd

d de ce ccc cc
cc

dd

£1.

Man kann also bey solchen Darstellungen der 
einzelnen Classen (wie hier in 60, 61) durch die Ab­
sonderung von a, mehrere a (ihre Wiederholungen) 
auf einmahl- wie vorher (57) einzelne a vor­
schreiben. Die Darstellung für jede zu entwickelnde 
Classe lehrt jedesmahl, wie weit man mit den Wie­
derholungen von a fortgehen muß, die für andere 
Classen und andere Summen- Nicht immer bis auf ä° 
herunterfallen. Die zunächst auf die Wiederholungen 
von a folgenden Verbindungen von b, c, d.... von 
Lb, bc... von bbb, bbc... «. s. w. befolgen das com*

U 2 bind*
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binatorische Gesetz in 31 (S. 269, *)  nur daß man 
hier für die dortigen a,b,c... schreiben, oder

d°n Zeiger (‘ ’ den dortigen (‘^")

nehmen muß. Von diesen Verbindungen, hängen 
die unmittelbar auf sie folgenden Binionen im Win­
kel ab; und so gemährt hier die Combinationslchrc 
einen Ueberblick des Ganzen, aus seinen einzelnen 
Theilen, den man auf keinem andern Wege in der 
Kürze und Vollkommenheit so deutlich und anschau­
lich, haben kann.

6z.
Ein Beyspiel einer gemischten (nicht ganz rein; 

kombinatorischen) Darstellung hier zu geben, mag 
die Bestimmung der Complexionen dienen, die Herr 
Prof. Klügel in der Schrift der polyn. Lehrsatz 
S. 61 aufgestellt hat.

AM fgabe. Die Complexionen der lexikographi- , 
sehen Ordnungen 2, 3, 4, 5 u. s. w. für «J*  und 

von der Ordnung, i unabhängig/ ,u entwi­

ckeln.
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c-,
u.

f.

w.

tl. s. w.

3 4

7

3
4
5
6
12

2'2

2
2
2

3
4
8

2

2
2
2
2

2

3
3
4 
-r s 
10 
zH 

3 H

Complexionen sie 
2trTfc J

3, 4, 5, 6...)

2
2

2
2

2

2
2

2
2
2
2

3
3
3 4 5

9
8
7
6

u. s. m»
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64.
Auflösung. Die Complexionen der niedrigsten

Summen sind, für gerade zahlen
212

für un­

gerade Zahlen Daraus lassen sich die Com-

plexionen höherer Summen für beyde, folgender ge-
ftallt herleiten:

I. Man setze alle Complexionen der vorhergehen­
den niedrigern Summen, 2 vor. Das giebt die Ord­
nung der folgenden höheren Summen.

II. In den so gefundenen Complexionen, vertau­
sche man (mit Uebergehung aller derer, wo die bey­
den ersten oder letzten Zahlen, eins oder beydes, 
nicht verschieden sind) die erste Zahl mit der 
nächstfolgenden, die letzte mit der nächstvorhergehen- 
den des Zeigers, das giebt die Ordnung 3 derselben 
Summe.

HL Dasselbe Verfahren auf die (nach II.) gefun­
denen Complexionen angewendet, giebt die Comple- 
xionen der Ordnung 4 aus denen der Ordnung 3 u. 
f. w. alle folgende Ordnungen aus den nächstvorher- 

gehenden.
IV, Sobald man, bey Anwendung von n. und

III. auf eine Complexion verfällt, die nur aus zwey, 
gleichen oder um eins verschiedenen, Zahlen 
besteht, so nimmt man beyder Summe, und setzt sie 
als letzte Complexion dieser Summe darunter.

Auf ähnliche Art kann man von der Ordnung 3 
oder 4*..  oder m anfangen, und auf die Ordnun­
gen mfi, M72 u. s. w. fortgehen.

65.



der kombinatorischen Analytik. zrr

65.
Wegen des Umftandes (64 IV.) gehört tdas Ver­

fahren zu den gemischten, und hat für Zahlen- 
complexionen keinen Auftoß. Um es auf Buchftaben- 
complexionen anzuwenden, darf man nur, auf diesen 
einzigen Fall, den Index vor Augen haben; alles 
Uebrige geht sonst rein-combinatorisch fort, wo der 
Buchstaben gleiche Bequemlichkeit mit dem der Zah­
len hat (S. 251.) Man hatte die Auflösung der Auf­
gabe (63) auch so geben können, daß man jede nächst­
folgenden Complexion aus der unmittelbar vorherge­
henden abgeleitet hatte; aber hierbey würden sich zu 
jenen arithmetischen Summen (64 iv.) auch noch 
arithmetische Ergänzungen eingefunden haben, 
und so das eombinatorische Verfahren, bey aller 
Leichtigkeit an sich, doch minder rein, als das in 
(64) geworden senn. Die; Darstellungen in (63) 
enthalten alle (von Klügel im polyn. Lehrsatz S. 
61) vorkommende Complexionen der Summen 8, 9, 
10 und noch mehrere, in einer lexikographischen.In­
volution.

66.
Ein Beyspiel, wie schnell die rcombinatori- 

schen Formen (was für die Analysis so wichtig 
ist) sich in einander umwandeln lassen, mögen idie 
hier folgende drey Anwendungen zur Summe 7 ab­
geben.

Nach
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Räch Boscowich. Nach Hin den- Nach H in den-

rnmi 
211III 

22111 
2221 

zriir 
3211
Z22
321 
4UI
421
43 
5U
52
6i
7~

bürg I. 
IX.
116

25
! 34

115

124
133
223

, 1114
1123
»22*
|11113
[ I T

i null

Diese 3 Darstellungen sind dieselben in Zahlen, 
die S. 285. in Buchstaben aufgeführt sind, nur daß 
die dortige erste, 2te und dritte, hier die 2te, 
zte und ifte ist. Die Darstellungen der Zerfällungen 
nach Boscowich ist zu dem Gebrauch bey den Com­
binationen überhaupt nicht so bequem, als die bey­
den von Hindenburg gefundenen, und die Abthei­
lung nach jener kann sehr leicht aus diesen hergelei­
tet werden. Die erste Hindenbürgische Zerfallungsart 
dient vorzüglich, wenn mit der Zerfällung zugleich 
die Abtheilung, nach der Anzahl der Theile (nach 

Classen) verlangt wird. Die zweyteHindenbürgische 
Zerlegungsart, giebt mit den Zerfällungen einer Zahl 

zu-
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zugleich die durch Winkelhaken von einander geson- 
Werten Zerfallungen aller kleinern, und hat in Anse­
hung der etwas großem Leichtigkeit;in der Darstel­
lung, wegen des einfachern Gesetzes der Zusammense­
tzung, Vorzug vor der ersten Art. Dagegen ist, 
in Beziehung auf die Analysis überhaupt die Hin- 
denbürgische erste Art von Zerlegung (nach Classen 
von gleichvielen Theilen) von weit ausgedehnterm 
Umfange in der Anwendung als die zweyte; weil es 
unzählig viele Fälle giebt, wo man nur die Comple- 
xionen einzelner Classen (der einzeln Abtheilungen 
zwischen den horizontalen Linien) nicht aber aller 
Classen zusammen nöthig hat. Auch enthalt die erste 
Art zweyerley Involutionen i) der niedrigern 
Summen durch alle Classen 2) der {niedrigern 
Classen zu verschiedenen Summen in den einzel­
nen Classen; und man kann jede der beyden übrigen, 
hier angeführten Anordnungen, aügenblieklich aus ihr 
darftellen. Das Letzte gilt auch von den beyden an­
dern Anordnungen, und ist eine natürliche Folge d a- 
vo n, daß man bey den Combinationsverfahre^ im­
mer alle Elemente in der Zusammensetzung vor sich 
hat. Von diesen ist die dritte Darstellung die leich­
teste in. der Entwickelung. Aus ihr formt man die 
zweyte, wenn man von oben heruntergehend 
erst die einzifrige (hier 7) dann die zwey- 
zifrigen (r,6 und 2, 5 und 3, 4) dann die dr ey. 
dann die vier- u. s. w. zifrigen Complexionen 51h 
sammenliest, die gleichvielzifrigen jedesmal in eine 
Classe zusammensetzt, und diel letzte mit 1,1,1,1,1,1,1, 
(der einzigen siebenzifrigen Complexionen) beschließt. 
Aus dieser zweyten Anordnung schaft man sogleich die 

er ft e
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erste, wenn man in der zweiten, von unten hier­
auf steigend und rückwärts lesend, alle diejeni­
gen Complexionen in eine Ordnung zusammen- 
setzt, (die in dieser zweyten) mit i, oder 2, oder 3 u. 
f. w.,mit7, sich enden, und folglich mit diesen Elemen­
ten in der ersten anfangen. Auf ähnliche Art wird 
(Arch. der Math. H. n. S. 188) eine andere lexi- 
kographische Darstellung in eine Classe nan- 
ordnnng umgeftaltet, oder, wie man sagen könnte 
umgelesen.

67.
Ich habe von den combinatdrischen Operationen 

hier nur das Unentbehrlichste vorgetragen, das, was 
theils des Zusammenhangs, theils des Folgenden we­

gen, da seyn mußte. Die Operationen, wo Wieder­
holungen der Elemente verstattet sind, sind jfür die 
Analysis bey weitem die wichtigsten. Aus den Bor­
schriften für diese folgen zugleich die, wo keine Wie­
derholungen vorkommen dürfen; daher ich mich da­
bey gegenwärtig so wenig aufhalte, als bei der Ver­
schiedenheit der Zeiger, in Absicht auf die Folge oder 
Menge ihrer Elemente. Von der lexikograyhischen 
ober alphabetischen Darstellung, habe ich^nur die zu 
bestimmten Summen hier (37, 46) aufgeführt. Ue- 
Lerall sind hierbey Involutionen vorzüglich bequem, 
die hier nicht durchgängig durch eingezeichnete Win­
kel bemerklich gemacht worden sind: .dahin z. B. die 
(31, ») aufge-führte gehört, eine der wichtigsten, die 
(Infin, Dign, p. 17, ig) etwas weiter ausgeführt ist, 
und sehr mannigfaltige Abschnitt^-durch einzuzeichnen- 

de 
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de kinien und Winkel verstattet, und so verschiedene 
Untersuchungen veranlaßt (Ebendas. S. 19 u. f.) wo­
bey zu merken, daß die dort vorkommenden Zeichen, 
keine combinatorischen, sondern bloß willkührlich ge­

wählte, sind.

68.
Beyden Involutionen wird gewöhnlich ein Theil 

der Complexionen (die Ordnung 1 oder a, S. 238, 9 
durch bloßes vorschreiben des er­
sten Elements erhalten. Man 
sieht hier ein Schreiben der Ele­
mente in die Tiefe (Arch. der 
Math. H. 1. S. 15.) oder in ver­
tikalen Colonnen, wovon die Zah­
lenreihe gleichfalls ein sehr ein­
faches und belehrendes Beyspiel 
aufstellt. Ich will hier nur den 
Anfang des dyadischen Zahlensy­
stems aus den beyden Grundzah­
len 0, i beyfügen, wo die übcr- 
schriebenen Potenzen der 2 anzei­
gen, wie vielmal jedes der bey­
den Elemente in jeder Vertikal­
reihe abwechselnd untereinan­
der zu schreiben sey^ Die hier 
eingezeichneten Parallelogramme 
(statt den sonstigen Winkel) zei­
gen jedesmal den Perioden der 
zusammengehörigen Ziffern in den

u. s. w. Vertikalreihen der ohne Aufhören 
in

24| 2'j 2a|2’| 2°

O O O °l O

0 0 0 °11

0 0 0 I 0

0 0 O I I

0 0 I O 0

0 10 11 O I

0 Q I I 0

0 0 II I 1

0 1 O O 0
I 0 I O O I

0 1 O I 0

0 r O I I

0 1 I O 0

0 1 I O I

0 l I I 0

0 r I I I

1 - - - -

1 I I I
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in die Tiefe hinab wiederholt werden muß. Bey 
Systemen von 3, 4, 5 oder mehreren Grundzeichen, 
würden die Wiederholungen der einzelnen Grundzei­
chen in den vertikalen Reihen eben so durch Poten­
zen der Zahlen 7,4,5 u. s. w. nachgewiesen werden. 
Bey dem dekadischen System können hier die Potem 
zen io°, ioT, 102, 10’ n. s. w. .vor.

Die unmittelbarste Anwendung zeigt 'die Varia- 
tionsaufgabe (20), wo' man die Vorschrift für die 
dortige Darstellung (4) nach (68) für ein triadisches 
System aus a, b,c hatte geben, und so nicht bloß wie 
dort die a sondern auch die übrigen Elemente b, c 
nach senkrechter Fortschreitung in die Tiefe hatte 
schreiben können. Eine zweyte aber nicht so unmittel­
bare, Anwendung zeigt (31, £), denn hier könnte 
man die Wiederholungen der a,b,c in den einzelnen 
vertikalen Colonnen nicht durch Potenzen der 3, son­
dern müßte selbige durch Zahlen aus der Tafel der 
figürlichen Nachweisen, wie Herr Prof. Rothe in 
eiuem andern Falle, durch Zahlen einer andern Ta­
fel gethan hat (Arch. der Math. H.H. <5. 171 —174) 
Eine interessante Anwendung solcher Fortschreitung 
gegebener Elemente in die Liefe, geben die cykri­
schen Perioden. Hindenburgs Abhandlung davon 
im Magazine für reine und angewandte Mathematik 
(1786 St. IIL 281 — 324).

All-
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Allgemeine Glieder für Classen und Ordnungen, 
erste und einfachste Relationen in combinats- 

rischen Zeichen.

70.
Ich habe den Vertrag der Vorschriften über di>e 

beygebrachten kombinatorischen Operationen durch 
dergleichen Glieder und Formeln nicht unterbrechen 
wollen. Sie sind aber wichtig und müssen daher 

nachgeholet werden.

Allgemeine nte Classe der Combinationen über­
haupt, mit Wiederholungen (31).

a" an_ 1 ZA ’j' an~3 ZB an~ 3 ZC... a° ZN ™ *N

e 2 3 4 . • a r 1 2 3 4 . . .x
\b c d e . , J \a b c d . . J

Da hier die Wiederholungen von a nach der Ord­
nung vorgeschricben werden, so beziehen sich die 
Combinationsclassen ZA zß zc... hier eben so auf 
b, c, d wie in (31) auf a, b, c... und können auch 
die Werthe derselben unmittelbar (aus 31) abgelei­
tet werden, wenn man für die dortigen a, b, c... 
hier b, c, ä... setzen. Obige Formel giebt der Din­
ge a, b5 c, d . . .

für n 1, Unionen a1 f a° ZA = ZA
- n = 2, Binionen a" ch a1 ZA f a° ZB ='B
e n e= Z,Ternivnen a3 aa ZA t a1 ZJ3 f aQ ZC = ZQ

&c. C 1234 
b c d e
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Man darf also nur der Dinge b, c, d... Com­
binationsclassen nach der Ordnung suchen ») 
und ihnen die zugehörigen Wiederholungen von a 
vorschreiben.

Diese Formel für die allgemeine nte Classe der 
Combinationen überhaupt, hat Hindenburg bereits 
(Infin. Dign. p. 159 und Nov. Syst. |Perm, p. XY,Ik) 
gegeben. Aber die hier gebrauchten combinatorischen 
Zeichen ZA, zß, zc... welche Hindenburg jetzt einge- 
führt hat sind deutlicher und verständlicher als die 

_ ' x . r r Z
dortigen willkuhrlichen Zeichen B, B, B...

Allgemeine Darstellung der Combinationen zur 
unbestimmten Summe n, mit Wiederholungen.

72.

Für den Zeiger Q ® | 4 “ J giebt die Auflö­

sung (48) die Buchstabeninvolution für jede verlang- 
te Summe.



Eben das giebt die zweyte Darstellung (in *6)  
wenn man darin b, c, ä... statt a, b, c. ♦. setzt.

II. Die erste Darstellung in I. zeigt nur den An­
fang für das unbestimmte n J. Dieser bleibt wegen 

der Jnvolutorischen Fortschreitung bey jedem höhern 
Werthe n derselbe Z auch fällt der Fortgang nach 
demselben Gesetze (48) klar in die Augen- und hat 
nicht die geringste Schwierigkeit.

in. Die Complexionen zwischen jedem Paare 
horizontaler Linien haben immer eine gleiche 
Anzahl von b vorgeschrieben/ die niederwärts succes­
sive um eins abnimMt. Drükt man diese Mengen 
durch Wiederholungsexponenten (59) aus, so recht- 

fer- 
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fertigt das die Darstellung von JpunI wo die Wie­

derholungen von V bis auf b° herunter fallen. Auch 
hier deutet b° an, daß b in den übrigen Verbindun­

gen nicht weiter verkomme.
iv. Die Complexionen neben den Wiederholungen 

von b, die hier in Winkeln stehen, haben (die erste 
ausgenommen) weiter kein b, und beziehen sich auf 

den Zeiger Q | J 5 ♦♦♦'), nach welchem die Comple- 

xionen in einem und demselben Winkel auch einerley 
Summe geben, die nach der Reihe der natürlichen 
Zahlen fortgehend, nach -F, u.s.w. steigt.

V. das führt auf der Gleichung:
njsslj»-1 bfb“-» 2J f b«"3 3Jfbn-* 4J..t f b° ”J

Xi 2 3 4..A /2 3 4 5 6...X
\b c d e.../ \c d e f g.. .y

Der Zeiger linker Hand gehört zu nJ linker 

Hand des Gleichheitszeichens, der Zeiger rechter 
Hand zu den obigen Involutionen. Die Entwickelung 
ihrer Glieder giebt nachstehende lexikographifche > 

Involution.

*) die J bedeuten hier dasselbe als

"J
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”J ■

(X » 3 4-..\ 
x b c d e.. J

Combinationen zu bestimmten» 
Summen in direkter lexikogra-i 

phischer Ordnung.

I ,n- t b ZZZ bn"ib
f bn*a  “— b“-2c
t b-3 3 J — b**-3d
*j*  bn-4 4^11*  ----- b-4[c*,e]
f bn-5 f ------- bn~f [cd, f J ;
f bn~<y <5^ bn-tf [c’,ce, d2,g]
t b”-7 7 J ™ bn”7 [c2 d, cf, de, h]
f b«-8 8 J —2 bn“S [c4, c2e, cd6, cg, df, e2, i]
f bD~9 9 J ---- bn- 9 [c’d, c2f, cde, cb, d?, dg, es, k]
•f- bn-1° ---- bn-10 [c$, c’e, c2d2, csg,cdf, cea, ci,

t b-11 11 $ —
d’e, dh, eg, f", 1]

b»-II [c’d.c’f.c’de.c'h.cd’, cdg,
&c. &c. cef,ck, d2f, de2, di, eh, fg, m]
<2 3 4 5***>
Vc d e (...) u. f. w. f. t

Das ist das allgemeine Schema, deren die Anfänge 
in dem oben (S. 280. erwähnten Hindenbürgischen Pro­
gramm und im Archiv der Math. H. IV. S. 390, 393, 
395) vorkommen. Die Complcxionen in den Klammern 
(deren Summen immer mit der von n an b abgezo­
genen Zahl Übereinkommen) sind hier zur Ersparung 
des Raums neben einander, nicht wie dies (und 
hier in 72, 1.) unter' einander geschrieben.

73*
Diese Darstellung gehört zu den Involutionen 

der vollkommensten Art, und gewinnt durch den all-
ge- 
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gemeinen Ausdruck, beydes an Kürze und Bequem- 
quemlichkeit zugleich. Eine niedrigere Involution 
zu bestimmten Summen, z. B. die für "J (in 72 l aus 

ihr ab zusondern, darf man nur n = 7 seyen, 
und e»nen Horizontalftrich unter b»-? *J  d. i. 

b° ’J und dessen (rechter Hand des Gleichheitszei­

chens befindlichen) Werth ziehen: so giebt das, was 
über diesen Strich stehet, zusammen die gefoderte 
Involution für 'J, auf den in (72 I, befindlichen 

Zeiger bezogen.

1 Jede nächsthöhere Involution entsteht durch An­
fügung ernes neuen Gliedes zu den schon gegebenen, 

folgendergestalt: Es seyen und b«-»+i

1,1-1 J das vorletzte und letzte Glied der gegebenen 

Involution, so findet man daraus das neuan zu-- 

fügende wenn man 1) allen Complexio-

nen fnc m~2J (die im vorletzten Gliede in der 

Klammer stehen) den Buchstaben c vorsetzt 2) in den­
jenigen Complexionen für m~1J (die im letzten Glie­

de in der Klammer stehen) welche zwey ungleiche An­
fangsbuchstaben haben, den ersten Buchstaben mit 
dem nächstfolgenden des Zeigers vertauscht 3) die 
Complexionen, wie man sie (nach 1 und 2) gefunden 
hat, in ihrer Drdnung, neben bu-m in die Klammer 
setzt. So sieht man, wie man z. B. für m = 11, 
das Glied b«-iitrJ aus den beyden vorhergehenden

’J und bn-ioIÖJ hüt finden können, Auf die­
sem
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fern so leichten Wege ist die obige Darstellung, aus 
den Anfangsgliedern bn~ib, bn-*c 3 b°-Zä conftruirt 
worden; und daraus erhellet, daß man die Wieder­
holungsexponenten (59) hier eben so leicht bey c, d, 
e, f... als bey b anbringen kann, zu nicht geringer 
Verkürzung im Vortrage, und ohne dadurch die 
Vortheile der Involution aufzuheben oder zu ver­
nichten.

74-
Setzt man die (S. 321) in Klammern eingeschlo- 

ßenen Complexionen so neben die b»-i, b”-», b«-r, 
u. s. w. daß zuerst die eiubuchftabigen, dann die 
zwei- dann drei- vier und mehrbuch st abigen 
Complexionen, in vertikalen Reihen, wie in nach­
stehender figürlicher Anordnung, neben einander fol­
gen, so wird dadurch jene lexikographische in eine 
Classendarstellung augenblicklich umgewandelt 
(66).

£ y
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e2dbti~7

ib'1- 8

c’dbn-9 k

c’bn-lO 1

bn-ll m

I

c3

c2e 
cd2

c4dc’f 
c2de 
cd3

Combinationen zu unbe­
stimmten Summen n, nach 
gutgeordneten Complexio> 

nen und Classen

c3e 
c2da

c4

c2 
cd 
ce £
cf 
de
cg 
df 
e= 
ch 
dg 
es 
ci 
dh 
es: 
P
ek 
di 
eh 
fg

i?\ 5 5 ' ? - -

O I 2 Z 4 5 *

cf 
cde 
d3
°2g 
cdf 
ce2 
jPe
c2h 

cdg 
cef 
daf 
de2

75-
Die Darstellung (74) bricht hier, wie die, von 

der sie abgeleitet worden, mit den zu b”-n gehöri­
gen Complexionen ab. Die Vergleichung derselben 
mit der Involution (72, lS. 3*9»)  zeigt folgendes:

Di) ie
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1) Die Wiederholungen von b linker Hand des 

Doppelstrichs in (74) sind die b längst der Senkstri? 

che des Winkels (S. Ziy).

2) Die Comple).nonen in den Fächern rechter 
Hand des Doppelstrichs (74) sind dieselben, die zwi-? 
schen den horizontalen Schenkeln zweier nächstem 

Winkel (S. ziy) liegen.

3. Die Wiederholungen der b (1) nur die danr-> 
denstehenden Complexioncn (2) gehören so zusammen, 
daß die erftern jeder einzelnen Complexion vorgesetzt 
(oder damit verbunden gedacht) werden müssen.

4) Die Zahlenwerthe der Buchstaben in der Dar--, 

stellung (74) giebt der Zeiger
<1 = 3 4 5 6..A 
Vb c d e f g.. V

Dieser bringt durchgängig die Glieder (in 3) auf ei­
nerley Summe n. Die Summe in den einzelnen 
Complexioncn (2) ist nehmlich immer so groß, als 
die Zahl, die von n an b abgezogen wird.

5) Das Absondern niedrigerer Involutio-- 
nen aus höhern geschieht hier durch Ziehung eines 
Horizontalstriches, auf eben die Art, wie in (S. 73). 
Eben so auch der Fortgang für höhere Invo­
lutionen durch Anfügung neuer Glieder an die ge- 

6) Die Vertical - Reihen oder Cotonnen der Com--"
plexionen in den Fächern sind unten, nach der
Ordnung mit o, 1, 2, 3, 4 ... bezeichnet. Zählt 
man nun die Glieder oder Fächer der einzeln Verri- 
calkolonnen von oben herunter 11,12, ?3/., .Ä

* so 
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so kann man die Complexionen jedes bestimmten 
Fachs bestimmt nachweisen, und selbige bequem un­
tereinander vergleichen.

76.
Die Darstellung (74) kann auch von jener an­

dern »(72 S. 321) unabhängig, folgendergestalt ge 
funden werden:

I. Man schreibe die Wiederholungen b«1*1, b«->, 
bn~bn-4,... in eine Verticalreihe unter einander, 
und gleich daneben die einzeln Elemente b, c, d, e... 
in die erste Verticalreihe (75, 6) rechter Hand des 
Doppelstrichs.

II, Die übrigen Colonnen und Fächer mit ihren 

Complexionen, z. B. Col. n7m, findet man, wenn 
man allen um zwey Fächer höher liegenden Comple­
xionen in der nackstvorhergehenden Colonne sallen 
Complexionen in Col. (n — r) 7 m] den Buchstaben 
e versetzt; 2) in den Complexionen, die unmittelbar 
über dem Fache liegen, dessen Complexion man sucht 
[in den Complexionen in Col. n7(m — 1)] mit Ueber? 
gehung derer, die Zwey gleiche Anfangsbuchstaben ha­
ben, den ersten Buchstaben mit dem nächstfolgenden 
des Zeigers vertauscht, und z) die (nach r und 2) ge­
fundenen Complexionen, in Col. n7m nach ihrer Ord­

nung setzt.
Für m = 1 wird 7 (m — 1) = o. Es giebt 

nehmlich nirgends ein Fach über den ersten, also auch 
für Cd. n1o nichts umzutauschen.
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77-
Für jeden bestimmten Werth von n in (74) z. 

B. für n = io, sind b“-io mir den zugehörigen, 
rechter Hand daneben stehenden Complexionen die 
letzten, mit denen die Darstellung abbricht, so, daß 
b”-11 mit allem was daneben und darunter steht, 
für den Werth von n = 10 nicht weiter in Betrach­
tung kommt. Was über dem Horizontalstrich unter 
bn-10 (d. h. hier b°) neben den Wiederholungen 
von b liegt, enthält zusammen die Combinarions- 

classen.

(l i 4 5 6..A 
d e f g..../

Der Zeiger für die Classen fangt hier von c oder 
t an, weil die Wiederholungen von b schon ein, für 
allemal in (74) abgesondert sind. Die Complexionen 
der einzeln Classen I0A, liegen hier in den 
Diagonalfächern niederwärts rechter Hand, 
der erstem xoa durch 1; der zweyten ,OB durch k; 
der zten ,oc durch i; der 4ten I0D durch h; u. f. w. 
aber nur bis an den Horizontalstrich unter bn-*o,  
weil unter diesem Strich nichts weiter (für n --- 10) 

vorkommt.

78.
Exempel. Die Complexionen für

ICE
1 a 3 4 5 aus 74 anzugeben 
b c d es g*
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Für n = io findet man nach (77) aus (74)

’°E = big f b’[cf f bä|c2e t b’|c’d f b’|c*  
|^L |cd’ -----  -----

Die Complexionen sind hier-nach (60) neben 

em«nver geordnet. Eine Won (74) unabhängige in- 
volutorische Darstellung derselben unter einander 
gäbe (58), wenn man mit *°E  eben so verführe, wie 
dort mit ,OD, und für die dortigen a, bpc... hier 
b- c, 6... setzte. Diese Anordnung wäre einerley mit 
der, wenn man die hier gefundenen Complexionen 
ganz ausgeschrieben (ohne Wiederholungsexponenten) 
unter einander setzte.

79.
Zöge man (wie in 58, 59) von jeder Zahl des 

Zeigers (75, 4) Eins ab, d. i. nehme man anstatt 

des Zeigers (7 * für (74) nun s1 2 3 * 

so würde das einen Einfluß auf die Summen der ein­
zelnen Complexionen in den Fächern der einzeln Ver- 
ticalreihen haben. Sie würden sämmtlich niedrigere 
Summen darftellen.als jene. Die Complexionen un 
der ersten Vertiealeolonne um 1; die in der zwey­
ten um 2; die in der dritten um z; u.is.^w.

80.
Diesen Unterschied anschaulich darzuftellen, darf 

man nur, statt der einzeln Complexionen, das zuge­
hörige Classenzerchen in die Fächer setzen. Das giebt
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/

f.w.

(B) nach 79

Beyde,

4D
*d

’E 

°E

u. s. f.
>123456 78 9*0...  
\c d e f gh i k Im..«

-ü:—L   l;— 
, 2 3 4 5 6 7 8 9 .0 11 >| 
\.cde fghi k 1

4ß ’C
*B
CB ’C 
’B *C  

S~B ’C 
«Bl-C

0) für 74
b»-I b
ßn-2 "’A
b°-3 ’A
b»-4 4A 4B
bn~f "’A ’B —
bn-ß- 6A °B ÖC
b»-7 ’A 7ß 7C
bn-8 eA 6B sc ’D
bn-9 ’A 9B 9C 9D
bn-IO IOA ,oß ,oc t°D 10 E
bn-II ITA TIB “C XID “E

bn-l b

bn-a "^Ä
bn~3 *A
bn-4 ’A
b”-* ’ "^Ä
bn-ö- SA
b"-7 ÖA
bn-s 7A

bll~9 8a

bn- I 0 9a
bn-II | IOÄ
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Beyde, dem äussern Ansehen nach ganz verschie­

dene, Schemata « und ß geben, jedes auf den unten 
beygdfügten Zeiger bezogen, die Complexionen cher 
Darstellung (74)*

81.
”D

Um pa 3 * . . 1 durch 80« oder ß zu bestim-

men, darf man nur n= 10 setzen (77) so findet man
nach «; zeD = b’ ’A t b2 SB t b1 9C t b° I0D

nach ß; ,0D = b’ CA f b2 °B t b1 6C t b° °D
wo blos; der Zeiger in C80, 0) den Unterschied
macht. Diese Classe TdD wird nehmlich hier in Sum­

men von Classen zerlegt, wie in (58, 59); nur daß 
hier b, Cj d, statt der dortigen a, b, c... zu setzen.

82.

Die Vortresslichkeit der involutorischen Darstel­
lung (74) wird folgendes in der Kürze zeigen:

1) Die rein-kombinatorische Entwickelung (76, I, 

II.) und Anordnung (74) ist, bey ihrer Allgemein­
heit, dennoch äußerst leicht, und verstattet, die Wie­
derholungsexponenten, bey den Elementen der Com-

/plcxionen unmittelbar anzubringen, ohne chie Invo­
lution zu zerstören.

2) Die Wiederholungen von b, so wie die ein- 
zwey- drey- vier. .. buchstabigen Complexionen aus 
c, d, e, f... sind in einzelne Vertikalreihen, 
nach der Ordnung, classenweise (nach gleichnamigen

Classen
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Classen, aber zu verschiedenen Summen) gesondert, 
jene nach fallenden, diese nach steigenden Summen- 
exponeüten (fc*o\

z) Die Complexionen in den einzelnen Hori­
zontalreihen oder Fächern hinter dcm Doppel­
strich stellen einzelne Classen für sich, nach dem ben- 
gefügten Zeiger dar. Auf Ut nebenstehenden b zu­
gleich mit bezogen, sind es diejenigen Complexionen, 
die immer eine gleiche Anzahl Vorgesetzter b ent­
halten.

4) Die zusammengehörigen Elemente der lexi- 
kographischen Ordnung aus b,c,d... findet man 

in den Horizontalreihen (72, iv); der Classen dar-
stellung in den Diagonalreihen (77). Die hier gc- - 
troffene figürliche Anordnung stellt nehmlich beyder 
Zusammenhang anschaulich dar.

5) Das Ab sondern niedrigerer Involution 
neu (bestimmter und unbestimmter Summen) aus hö- 
hern, so wie der Fortgang für höhere Involu­
tionen aus den gegebenen, geschieht mit größter 
Leichtigkeit (75/ 5),

6) Die wenigen Complexionen in (74) vertreten, 
wenn man nach einander n = 1, 2, 3, 4... 11 setzt, 
vollkommen die Stelle der Tafel (infin. Dignit. p. 166. 
und Nov. Syst. Perm. p. LV1I1) und noch weiter, denn 
der Werth n => n giebt auch die sämmtlichen Clas­
sen zur Summe 11, davon in jener Tafel nichts vor­
handen ist. Die Buchftabeneomplexion der Tab. v. 
(infin. Dign. p, 167) aus (74) zu schreiben, darf man 
nur

statt 
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statt b, c, d, e, f, g, h, i, k, 1 (in 68) 
hier «, a y, A s, <, » setzen

7*)  Obschon hier nach der Vorschrift (76) I. il. 
folgende Complexionen und Fächer aus vorher­
gehenden abgeleitet werden,' so kann man gleich­
wohl jede einzelne Vertical- Horizontal- und Diago- 
nalreihen und Fächer ganz independent von andern, 
außer der Ordnung, schaffen. Das giebt insonder­
heit (go, 3) klar und deutlich zu erkennen, weil man 
die Complexionen jeder Classe und Summe .unmittel-r 
bar darstellen kann (55, 57, 58).

8Z.
Das zusammen zeigt die Güte und Vortrefflich-, 

keit sowohl der combinatorischen Methode überhaupt, 
als der Darstellung (74) insbesondere. Simplicität 
und Allgemeinheit bey der Entwickelung Kürze und 
Deutlichkeit bey der Anordnung, Mannigfaltigkeit 
und Leichtigkeit bey der Anwendung, sind hier aufs 
innigste mit einander verbunden. Das ist die von 
Hindenburg (im polynomischen Lehrsatz. S. 
54. Note c) versprochene endliche Vollendung. 
Was Herr Professor Klugel in der dortigen Note 
von den Vorzügen der combinatorischen Involutio­
nen überhaupt sagt, das gilt in einem eminenten 
Grade, vornehmlich von dieser letzten, noch mehr als 
von jeder andern in (71) nach welcher tue -in (74) 
im Ganznn geformt, und, mutatis mutandis, einge­
richtet ist; Die allgemeine Formel, deren nähere 
Entwickelung die Darstellung (74) giebt, wird in Fol­
gendem vorkommen.

, 84-
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84-
So viel schien mir nöthig, von den kombinato­

rischen Operationen, vorzüglich den Involutionen, 
im Zusamenhange hier beyzubringen. Die Auffüh­
rung bestimmter Vorschriften für die Entwi­
ckelung und Darstellung dieser Operationen ist un­
umgänglich nothwendig. Sie betrift die un­
mittelbare Anwendung der allerersten Gründe der 
Sache, und darf der Willkühr des Lesers nicht über­
lassen bleiben. Auch würde dieser nicht (selbst nicht 
einmal der geübte Analyst, sogleich und auf der 
Stelle) immer die kürzesten, und für gewisse Absich­

ten zunächst passenden Regeln und Vorschriften auf­
finden. Auf solche muß man sich also beziehen rön­
nen, und darum müssen sie auch irgendwo deutlich 
verfaßt und beschrieben vorhanden seyn. Die Sache 
(deren Nothwendigkeit gleichwohl einmal ist bezwei­
felt worden), so angesehen, spricht für sich selbst, 
und Herr Professor Klügel ist derselben Meinung, 

(Siehe die in Kz genannter Schrift S.89). Hinterher 
kann jedem freystehen und es wird auch keine Schwie­
rigkeit haben, die Vorschriften nach Gefallen für sich 
abzuändern, nach Umstanden zu erweitern und durch 

neue zu vermehren. ,

85-
Tch hoffe, die Leichtigkeit der hier angewiesenen 

Verfahren wird dem Leser von selbst einleuchtend 
Sollte aber diese kombinatorische Theorie, so einfach 
sie an sich ist, dem Anfänger gleichwohl verwickelt 
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scheinen, weil man sie, bey der Ausdehnung, die sie 
in der Anwendung hat, nicht mit zwey Worten ab­
thun kann: so kann ich einen solchen nichts Passende­
res und Wahreres entgegensetzen, als die Antwort, 
die Herr Hofrath Lichtenberg, in einem ähnlichen 
Falle, bey einer gleichfalls sehr einfachen nur dem 
Scheine nach verwickelten , physischen Theorie gege­
ben hat. — „Man muß viel Worte machen, nicht, 
„weil die Theorie selbst verwickelt ist, sondern weil 
„der Anwendungen die daraus erklärt werden können 
„so viele sind, Man sagt nichts anders, man wen- 
„dct es nur auf etwas anders an/- (Erxleb.Anfangsg. 
der Naturl. §. 549*  U S. 525). Alles fließt auch 
hier (wie dort) aus einer einzigen sehr einfachen 
Voraussetzung: Die Veränderungen bey rein- 
„combinatorischen Verrichtungen, lassen sich auf blo- 
„ßes Ansetzen oder Beyfügen, Wegnehmen oder Ab- 
„sondern, Aus- oder Umtauschen, der vorgegebe- 
„nen Elemente, zurückführen (S. 239. n.)/f

Vergleichung der Zeichen für combinatorische Ope­
rationen; einfachste Relationen derselben in 

diesen Zeichen.
' 86.

Die Zeichen selbst, so viel deren hier aufzufüh- 
ren nöthig schien sind schon im Vorhergehenden er­
klärt. Hier kommt es nur auf ihre Vergleichung ge­
gen einander an, und wie sich combinatorische (und 
in der Folge auch analytische) Satze bequem durch sie 
ausdrücken lassen. ,

0) Va- 
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(<) Variationen überhaupt, m it Wrederh0- 
Jungen.

Var (a b c d) fimpl.
87.

'7 es 'A + 'B f 'C f 'D f . f
(ab c d e....)

Die einzelnen Classen *A,  *B,  'C... beziehen 
sich auf (20, «), die Involutionen auf (20, m 
sofern diese Darstellung Summen von Classen invo- 
lutorisch enthalt. Die Elemente a. b, c, d, wer­
den jederzeit, als der zu bearbeitende Stoff, den Zei­
chen z7 und ‘A ‘B... unten beygefügt.

88-

Die Variationen gegebener Elemente enthalten 
alle Combinationen derselben, mit allen Permutatio- 
nen. Für jede einzelne Complexion einer Varia­
tionsclasse, müssen in derselben Classe auch alle ihre 
Versetzungen vorkommen. Man kann also wegen der 
Versetzungen gegebener Elemente auf die Varia­
tionsclassen verweisen, in denen sie enthalten 
sind, und die besondern Complexionen welche diese 
Versetzungen zusammen ausmachen durch den beygefüg­
ten Zeiger nachweisen. So ist z. B.

Perm.(a4b’) — Perm

10 G
/IIII222\
Vaaaabbb) = (aa*abbb>

Perm.(a,bqc4) Perm-T __ raaakbcccc)
xaaa bb ccccz

Die Auflösung giebt (15) wie bey dem dortigen 
Exempel (16). Sie «ist nemlich eine bequeme Auflö­
sung für den Fall, Permutationen als (beschrankte
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Variationsclaffen zu betrachten, in welchen bestimmie 
Elemente, aber jedes nur nach einer bestimmten 
Anzahl, vorkommen. Das kann man sehr bequem 
(wie hier) durch wirkliche Wiederholung der 
Elemente ausdrücken, welche zusammen die erste 
Permutationscomplexion (als die Reprasentan-- 
tinn allerübrigen) darftellen. Ferner

Die Auflösung giebt (iZ) und steht vollendet in (17) 
auch hier hat man bequeme Auflösungen für Varia­
tionen, aus bestimmten Elementen zu bestimmten 
Summen, aber ohne Wiederholungen, von 

welchen im Vorhergehenden nichts ist beygebracht 

worden. '
,0D'

Die Complexionen von (1234) sind mit unter 

denen von (1234567) enthalten, die (infi. Dign. p. 
177) stehen; daß sich also jene (ohne Wiederholungen 
aus diesen (mit Wiederholungen) auslesen ließen. 
Die angeführten Auflösungen zeigen, wie man sie 
leichter gradezu finden kann/')

(s) Com-

*) Man könnte auch die Combinationen (wie hier die Per- 
Mutationen) als beschränkte Variationen ansehen, 
deren Complexionen gut geordnet waren, und in die­
ser Rücksicht, nur eine einzige combinatvrische Ope­
ration die VariaLi on, annehmen. So wahr daß an 
sich ist, und so sehr das Ganze dadurch an Simplicität 
gewinnt, so ist es dennoch besser bey dem Vertrage der 
ersten Gründe der Wissenschaft von dieser Allgemeinheit 
nicht auszugehen, und drey eombinatorischen Opera­

tiv«
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G») Combinationen überhaupt, mit Wiederholungen. 

Comb. (a b c d) siyipl.

89.
') = 'A f 'B f 'C f ZD f ZL. .. f 'N, 

(äbcde...)
Die einzelnen Classen /A/L/c:... stehen in (3T/») 

die Involution 'j in (zr, ß). Auch hier sind den 
Zeichen 'J und ZA, 'B ... die Elemente (abcd...) 
unten beygefügt (86).

Einzelne Classen durch Summen von Clas­

sen (71).

90.
'N = a° f an-i 'A f a»-a 'ß f a«-3 'C... f ae /j\$ 

(a b c...) (b c de„.)

Die Classen 'A,'B,'C... giebt (31,*)  nur daß man 
hier b c d... statt der dortigen a b e... brauchen, 
oder die erftern für die lctztcrn setzen, muß. Die 
Beschaffenheir, die Zahl, der Ort der unten 
beygefügten Elemente zeigt nehmlich jederzeit, was 
für Elemente die Entwickelung und Darstellung der 
darüberstehcuden Classen zu gebrauchen.

Fol- 

tionen als besondere ihrer Art <umrsehen, und um so mehr, 
da diese Unterschiede beim Gebrauche häufig Vorkommen. 
Beym Vertrage der Regeln hingegen, kann man auf diese 
Dependenz Rücksicht nehmen: daher ich auch im Vorher­
gehenden die Verfahren für Van'atlvnen, denen für Com­
binationen vorgesetzt, der letzter« Abhängigkeit von den er# 
fiern gezeigt, auch hier, wegen der Permutationen, auf 
Variationen »erwiesen habe.
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Folgende Classen aus unmittelbar vorher­
gehenden (31, 32)

91-
—i —i —1 —1 —1

= azN f b'N f c'N,.. f tzN f wZN 
(ab .. ♦ w) (ab.. w) (bc . w) (cd. n) (-frw) w

Diese Formel enthält die Auflösung (32), sym­
bolisch dargestellt. Bei dieser werden nehmlich die 
Ordnungen jeder folgenden Classe ZN, aus den Ord-

—1
nungen der unmittelbar vorhergehenden ZN durch suc­
cessives Vorschreiben der Buchstaben a,b,c... gefunden

Complexionen mit einerley Endbuchstaben.

92.
—1

(i f ZA f zß f ZC f ZD 7 Z.E... 7 ZN) q

(a b c d e,.. q)
Nämlich für den Endbuchstaben q, durch alle 

Classen, von der ersten bis der nten; und so anch 
für andere Endbuchstaben und Classen.

Complexionen der Endbuchstaben a, b, c, d... 
nach der Reihe.

93-
—i —1 —r

'N = an f ZN b f ZN c ZN d f etc..,.
(a b c) ... (ab) (a b c) (a b c d)

Für die Complexionen jedtr einzelnen C5asse ZN 
aus den Complexionen der unmittelber vorhergehen- 

—i
den Classe ZN mit Beziehung auf die untergcsetzten

Ele-
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Elemente (ab) oder (abc) u. s. w. (90) In der An­
wendung kommen (9r, 93) weit seltener vor, als (90 
91). Hier sollen sie bloß zeigen, wie außerordentlich 
leicht solche Forderungen combinatorisch sich abthun 
lassen. Die Formeln (90, 92) geben Beispiele von 
Veränderung der Elemente, in Absicht auf Menge 
und Beschaffenheit, wo man zugleich mit auf 
den Ort sehen muß (90.) wo sie stehen. Verschiede- 
n e Elemente (auch Zeiger) kommen nicht selten bej 
einer und derselben Formel vor, und werden mit 
großem Nutzen gebraucht. Die oben beygefügten Buch- 
stabenelemcnte beziehen sich auch hier zunächst, wie 

die Zahlenelemente bey der Aufgabe (S. 309), auf 
die durch sie zu bezeichnenden Ordnungen.

y) Variationen zü bestimmten Summen 
mit Wiederholungen.

, J * ) num n *)  
d e...>

*) Bey den Operationen zu den bestimmten Summen, 
wenn man sie auch schon von Zahlen unabhängig (37, 40, 
46, 49, 55, 57) darstellen kann, muß man Doch Zahlen 
und Buchstaben, wie sie zusammengehören im Zeiger an­
geben , weil die Summencxponenten der Classen von den 
Zahlenwerthen abhangen, und bey andern Zahlen anders 
werben (79, go); und so muß man den Zeiger (wie 
hierin 94) von -den einzelnen Elementen- Buch­
staben < 90, 91, 5>L, 93) oder Zahlen (65, S 3-'9 1 unter­
scheiden. Zuweilen setzt man den Zeiger wo einzelne Ele­
mente jureichken (15, 17,20,31 anzndeuten, die Re­
geln derOperatlonen crsireeken sich gleich leicht auf beyder­
ley Elemente.

94.

Var

Classen - Complexionen (37, 38). 
“7 ss M f aB fs «C f «D f f »N

Y 2
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Zi 2 3 4 5...> 
Va b c d e.. X

kexikographische Complexionen (37, 40)

95-

(Der Zeiger, wie vorher).
-Für mehrere Reihen p, q, r, s, t... nach Classen (44)

96.

= "X, t ”2ß t «C t "D t *£<•.  t ”N

tsrqp 
«jf

Wegen der

p qp rqp srqp ' tsrqp 
s= M -f- nß f "C f nD ”£ etc.

(Der Zeiger wie in 24)
Lexiko graphischen Anwendung für

«..tsrqp
"J1’ suche man die Darstellung in (45).

Combinationen zu bestimmten Summen 
mit Wiederholungen.

(1 2 2 4 s,,.x
, , ) Hum. v.

ab c d e .. X
Classen - Complexionen (46, 47,)

97-
®) = «A h"B f »C f ”D f »E... f ”N.

Lexikographische Complexionen (46, 48, 49J

98.

*J = ”A t "B t *C  t ‘JD + 1 "N
(Der Zeiger wie vorher).

Wegen der beyderley (48, 49) aufgeführten lexi- 
kographischen Formen, kann man auch das Arch. 
der Math. (H. IV. S. 397*  und 409, 414) nachsehen.

Wegen
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Wegen der gebrauchten Zeichnung für lexikographi- 
schen Ordnungen überhaupt (Ebendas. S. 396 Note) 
für Falle wo die Combinationsclasse noch mit Rei- 
henexponentev zu versehen find, lhier (53).

Höhere Znv0luti0nen, aus nächft v0rherge­
he n d e n nie d r i g e r n *)

*) Von einer andern Aufanmensetzung höherer Involutionen 
aus niedrigern, wo der Zeiger mehrmals verändert wird 
(Arch. der Math. H. iv. S. 41s, 4)- Statt des dorti­
gen muß das hiesige gesetzt werden, welches 
damals bey dem Drucke nicht zur Hand war. Dieser Um­
stand hat veranlaßt; daß der Analogie wegen (Lhend.) 
auch [}sj gesetzt werden mußte , wo das hiesige J 
allein hinreichend gewesen wäre. Eben so ist in Herrn von 
Prassens Abhandlung (ufus Lag. in Theoria Equatio- 
num Lipfia $1793) aus Manget der zugehörigen Typen 
überall J und J statt jT und J gesetzt werden. Die­
ses zu erinnern ist nöthig theils um Anstoß zu vermeiden, 
theils aber auch, weil die Beibehaltung derselben 
Zeichen nirgends so unerläßlich,, nothwendig 
und wichtig ist, als beider kombinatorischen Analysrs

99.

-;r -■ ■-j'fj
p 2 3 4 5..q p 3 4 5-1
La b c d C. ..J Lb c d e... J

Wegen der beyden ersten Involutionen feh^ 
man (46, 58), wegen der dritten, deren Zeiger 
von b (d. L hier 2) anfäugt (6$. S. 309). Hieher 
gehören die drey vom Professor Klügel (Der pplyn. 
Lehrsatz S- 6i.) aufgeführten Beyspiele.

Höhere
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Höhere Involutionen aus Summen der nie- 

dri.gern (S. 320, V).

100.

"J 333 a”"1 a an*1 *J  f an- 3 1J -j-L«-» *J  ♦ ♦ • 1" a° nJ 
(l ? 3 4..Ä <2 3 4 $ 6...>
\abc d..J \b c d e f...Z
Lexikographische Darstellung der vorigen

Formel.

101.
Sie ordnet die Glieder so, daß die 
Complexionen aus b,c,d... die gleich­
viel a vor sich haben, in eine hori­
zontale Reihe fallen. Für den Zei- 

g erCbc gehen die Complexio­

nen, neben den Wiederholungen von a, in steigen? 
der Summe 1,2,3,4 ,.fort; mit den Wiederho? 
l,ungen von a verbunden, geben sie durchaus die 
Summe n. Die b, e, d... der Darstellung (S. 321) 
sind hier mit a, b, c... verwechselt. Für n== 5 waren 
hrer schon alle Complexionen für J vorhanden.

Einzelne Klassen durch Summen von Klas­
sen. (Nov. Syst. p. LV. 9.)

an~1 a
a“~ 3 b
an~ 3c 
a:i-4[b/d] 
a«-5'[bc,e]
U, s. w. S. 32^.

102.
v}hn = an_I VA f a“"3- vß f a°’3 VC».. f a"-mvM

zi 2 3 4>«.\ 
(a b c d.. J

Diese Formel (mit Binomial- und Polynomial-Coef-
fizienren versehen wie sie für die Dignitaten des Po- 
lynomiumö paßt) fteht in der oben angezeigten Stelle 
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Hindenbürgischen Schrift. Hier habe ich bloß n und 
v verwechselt, um n und N auf einerley Zahlenwerth 
zu setzen. Das allgemeine mte Glied ist hier an-m vm. 
Sobald n oder v (oder beydes zugleich) ---- m werten, 
bricht die Formel mit diesem Gliede ab.

Für ,0D wäre N = d, also n 4, und
(£ b c.‘‘.) v t 4 = 10 folglich v = 6

also ,0D Ca”Af a2 aB f ä4 ’O f a° 6D 
(l 2 3..A fl 2 3 4..A
\a b C...7 Xb c d e ... J

vollkommen so, wie S. 305.
Eben so fände man den Werth für I$E, wie 

S. 306.

Jnvolutorische Classendarftellu ng ider vo­
rigen Formel.

103.
aB_I a a«-i a
an-2 b 8»-2 XA
a11-' c a»~3 2A
a”-4 sd.b’] an“4 [3A, 3ß]
a"-5 [e,bc] a»-5 f4A, .’BJ
u. s. w. S. 324. u. s. w. S. 329, ß

Der Zeiger für die Klaffen TA, =A...5ß, 3ß... u. s. w. 

ist fl 2 j Auch hier sind die b, c, ä... (in 74 
\b c d..V

und 80 ß) mit a, b, c... verwechselt worden. Die 
einzelnen Classen liegen in den Diagonalen nieder­
wärts (77) und so kommt hier die Bedeutung von n 
mit der in (102) nicht Mecein.



1

1Ü? f ? t *B  L= t (’A + *B) I 
ji Cf C t=Cf "jf (’A t ’B t *C) > 
L z - ''J i - - d

109.

Hindenburgs Theorie.

t 
t

Dariat. ohne und mit 
Summenexponenten.

f ..

105. 
t t ’A 

t 4B 
f’C 
t "0

*A

’A 
f ’B 
' 4C

D

f ’A

344 ,

ZA ----- ’A
ZB =■ 2B 
ZC = ’C
ZD -- 4D

Die Summe in (105) giebt

107. 
s 'AI s *A  f 5A f ’Al 
j t 'B’ l J f ’ß f 4ß •’ 
V 'C ; f+’n*  •„ 4,.r.

lt etcj 1
Eben so ist, bey mehreren.Reihen x,q,r,5,..'(24,2^)

iog.
p p p 

t ’zf f f 4J t etc.
qp gp qp .aB t 3ß f t etc.

rqp rqp
3c t 4C t etc/

(«) Verschiedene Relationen der Variati»^- 
nen und Combinationen, mit und ohne 

S u m m e n e x p 0 n e n t e n.
Combin. ohne und mit 

Summenexponenten.

p p
‘A = XA
qp
'B =3

rqp
'C C3

Die Summe aus (321) giebt.

104.
ZJ = M f M f M..
zß s ’ß f ’ß 4 4ß..
ZC = ’C f 4c t !C 
zjD = 4D t $I> 16D..

/ z

106.
Die Summe in (104) giebt 

s zzH s TA t 
jt'BfcJt 25 + 3B + 4B..J _ 4i ti, 
jr'cf 3c 14c t $c..,> — ^tCAt?Bf’C)l 
■IfetcJ L * - - J i. - - - )
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109.

P QP rqp p rqp
‘A f 'B f 'C f etc. B’Jf (M f aB)

P qP rqp 
t CA t3ßt 3C)tetc.

Variatioen an sich und Combinationen.

110.
Für = a'A ist M f 'S t 'C t 

'ß = b'B -------
ZC = c'c a'Afb'Bfc'c f ...

Die Variationen sind nemlich nichts anders als 
Combinationen, mit allen Versetzungen der Elemente 
in den einzelnen Complexionen. Wo also die Verse­
tzungen, (wie bey die Faktoren der Produkte) nichts' 
verschiedenes geben, darf man sie nur überhaupt zah­
len, und ihre Zahl den zugehörigen Combinations- 
Complexionen, welche die übrigen reprasentiren, 
beyfügen. Das geschieht durch die V e r se tz u n g s z a h- 
len a, b/ c... (Nov. Syst. Perm. p. IX. 24 und XL, 10) 
deren'Werth für jede Complexion gegeben ist. (Ebend. 
p. XXIV. 23. und hier S. 321; t, 2)

Combinationen mit und ohne Summene^ 
poncnten.

111.
özA ss Ä*A  t ö*A  f O3A t a*A...  

bzB s= b?B t t>3ß t b4B...
czc =a C’Q t

bzD=a d40...
1 s r s

Die Summe (aus in) giebt
113.
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112»
ctzA f ZB f CZC f ... = ctlA f (a’K f 6*8)  

t (a^A f b’ß f c’O f 
Für die Falle wo ZJ t=s azA, zß = &ZB u. s. w, (no) 
ist auch

HZ
‘A f ZS f ZC 7... --- stTA t (<rA f b'B)

t (a'A t b’B f c’C)f...

114.
Diese Formeln und Verglcichungen, wenn man 

einmal die Bedeutung der dabey verkommenden com- 
binatorischen Zeichen gut inne hat, sind so leicht, 
daß man sie nur zu sehen braucht, um sie sogleich 
d u r ch z u s e h e n.

Da hier überall keine andern Complexionen als 
solche vorkommen, bey denen; Wiederholungen verstat­
tet sind, so war es nicht nöthig, solches hier mit an- 
zumerken. In andern Fallen darf man nur die Buch­
staben a. r. (admiffis repetitionibus oder 0. r. (omisfis 
repetitionibus) beyfügen und z. B. schreiben.

Var. (a b c d...) fimpl. a. r. 
Var, (a b c d...) fimpl. o. r.

II. Die unmittelbarste Anwendung der Com­
binationslehre -zeigt sich bey dem allge­

meinen Produkten - und Potenzen- 
probleme der Reihen.

115*
Die Combinakionslehre deutet überhaupt die in 

bestimmter Ordnung gegebenen Dinge oder Elemente 
durch
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durch die Folge der Zahlen 1 2 3 4... oder der Buch­
staben a b c d... an. Bey der Verbindung dieser 
Elemente zu einer zusammengesetzten Ganzen, abftra- 
hirt sie von aller Bedeutung und betrachtet z. B. die 
Complexionen ab und ba als bloße Neben einan­
der st e l l u n g e n der beyden Dinge a, b noch mit dem 
Unterschiede, daß in ab das Element a die erste und 
b die zweyte Stelle einnimmt, welches bei ba um­
gekehrt sich verhalt.

116.

Bey dem Gebrauche der Combinationslehre aus­
serhalb ihren Grenzen hingegen, muß man wissen, 
was für Dinge die a,b,c,d... bezeichnen- muß die Be­
schaffenheit dieser Dinge und welche Beziehung 
sie auf einander haben, genauer kennen. In der Hin- 
denbürgischen Schrift(Nov. Syft. Perm. p. XXV. XXVI.) 
sind mehrere Anwendungen der Kombinationslehre auf 
-verschiedene Künste und Wissenschaften in der Kürze und 
nur überhaupt angegeben. Hier genügt es bey derje­

nigen Wissenschaft stehn zu bleiben, welche an der 
wohlthätigen Einwirkung der Combinationslehre den 
unmittelbarsten Antheil nimmt, den größten 
Vortheil davon zieht und gleichwohl bisher von 
dieser Seite fast ganz übersehen worden ist — der 

Analysis.

> 117-
Laßt man die Buchstaben a,b,c... allgemein aus­

gedrückte Größen oder Zahlen bedeuten, so darf 
nur noch angegeben werden, wie man ihre Verbin­
dungen ab, abc u. d. gl. zu nehmen habe. An sich, 

nem- 
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nemlich kann ab in arithmetischer Bedeutung eben so 
wohl a f b als a — b und a.b und a : b und ab 

a
und <b u. s. w. ausdrücken. Schränkt man aber 
so lange nichts anders erinnert wird — die Bedeu­
tung der (für sich oder in Beziehung auf Zahlen im 
Zeiger) gegebenen Elemente a, b, c, 6... auf afb 
t c t d,.. u. ihre Verbindungen?ab, abc, a-b... auf 
a.bj a.b.’c, a.a.b (d. L a2b)... ein, so entstehenida­
durch Produkte aus einzelnen Faktoren, die 
Wiederholungsexponenten (59) verwandeln sich in P 0- 
tenzexponenten, und die im vorhergehenden an­
geführten bloß combinatorischen Formeln uud Relar 
tionen zusammengehöriger Dinge oder Elemente über­
haupt, erhalten dadurch sogleich bestimmte arith­

metische oder algebraische.Bedeutung,

ii8-

Für die Anwendung, dieser und anderer combi­
natorischen Formeln und Relationen auf die Analy- 
sis, ist also nur noch übrig nachzuweisen, bey was für 

analytischen Problemen sie vorkommen; überhaupt — 
wo und wie sie zu gebrauchen, und im Calkul einzu- 
führen sind. Das nennt Hindenburg, statt der alge­
braischen und transzendentischen (oft sehr verwickelten 
und schweren) Operationen, die gleichgültigen (einfachern 
und leichtern) combinatorischen setzen, und benutzen. 
Das von Hindenburg hieben cingeführte Verfahren, ist 
sowohl in Absicht auf Entwickelung als Darstellung, 
von dem gewöhnlichen wesentlich unterschieden; da­
her auch die Einführung jener Operationen.statt die- 

. ftr
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ser, in derErklä rung namentlich verkommt, die Hin- 
dcnburg ohnlangst von der c 0 m b i n a t 0 r i sch e n A n a- 
lysis gegeben hak. (Arch. der Math. H. IV. S. 42z).

119.
Die Hindenburgischen Combinationszeichen sind 

übrigens so geformt, ihre Zusammensetzung so einge- 
gerichtet, daß sie das, wofür sie gebraucht werden, 
nicht nur aufs deutlichste anzeigen, sondern auch alle 
andere nicht combrnatorische Veränderungen sich bei 
ihnen anbringen, und durch sie nachweifen lassen. 
Sie können daher auch andere, von ihnen ganz ver­

schiedene Methoden leichter angepaßr werden, als 
man dem ersten Ansehen nach vermuthen sollte. Daß 
man dahey etwas neues lernen müsse, was man bis­
her noch nicht gewußt und in Ausübung gebracht hat, 
ist freilich eine nothwendige Bedingung, die man sich 
aber gerne wird gefallen lassen, wenn man eines 
theils sieht, wie leicht dieser combinatorische Kalkül 
ist, anderntheils, welche Schwierigkeiten anderer Me­
thoden hierbei umgegangen werden. Nach einer von 
Herrn Hofrath Käftner bey ganz anderer Gele­
genheit *)  gethanen Aeußerung zu urtheilen, gehört 
die Hindenbürgischcn Combinationsmethode offenbar 
zu den leichtesten; wenn man mit diesem vortreft 
lichen Mathematiker, diejenigen Verfahren überhaupt 
leicht nennt, wodurch man das Gesuchte leicht fin­
det, sollte man auch zuvor einiges, was nicht ganz 

leicht

*) Bei einigen von Herrn Professor Bück bekannt gemach­
ten neuen Auflösungen einiger schweren trrgvnomelrhcheri 
Aufgaben. iMstn. Eb, Lrigvn. Satz 15.)



35° Hindenburgs Theorie
leicht war, haben erlernen müssen. Das, was man 
hier zu lernen hat, hat aber auch nicht einmal den 
Anstrich von Schwierigkeit: es ist leichter als alles, 
was man sich nur immer leichtes denken mag. Das 
kann und wird vielleicht jedem Leser, der noch gar 
nichts von der Sache weiß, und von ungefähr auf 
diese Stelle trift, unglaublich scheinen — es ist den­
noch buchstäblich wahr.

120.
Wie sich Hindenburg bey dieser Anwendung der 

Combinationslehre, :insbesondere bey den allgemeinen 
Potenzen und Produktenprobleme, von denen vor- 
nemlich hier die Rede ist anfänglich verhalten hat, 

erhellet aus Infln. Dign. (§. XXI — XXIII, XXV und 
XXVII). Bekanntlich $etat() man nicht $teic[) zuerst 
auf den kürzesten natürlichsten Weg, und so hat frei­

lich die Sache nachher ein ganz anderes Ansehen ge­
wonnen. Alles ist nachher (wie Hindenburg bereits 
im Archiv der Math. H. i. S. 14. in der Note erinnert 
hat) aufs möglichste simplifizirt, allesauf rein-combina- 
torischc Begriffe gegründet, und sowohl die Hülfs- 
als andere daraus abgeleiteten Sätze in den streng­
sten systematischen Zusammenhang gebracht worden. 
Ein Beispiel davon mag die, auf dem Titel der 
Schrift derpolyn. Lehrsatz angegebene, neue 
Bearbeitung der obgenannten allgemeinen Potenzen- 
und Produktenprobleme darftellen. Beyde Aufgaben wer- 
den, wie man finden wird, aus dem combinatori- 
schen Boden in den analytischen gleichsam nur ver­
pflanzt, und lassen sich aus dem Gebiete der einen 

Wis-
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Wissenschaft unmittelbar in daß andere herüber­
bringen. , ,

121.
Aufgabe. Es sind mehrere Reihen 

a'f'dchc'f'ä'f' e... c= p

atbfcfbf e... = r 
u. s. w. f.

gegeben, man verlangt die Produkte von zwey, drey, 
vier... m dieser Reihen, von den vorhergehenden 
niedrigen Produkten unabhängig.

122.
Auflösung. Diese geben die Variationsklassen 

(25). Nach iljnen ist
qp rqp

qp — 'B rqp e= zG
srqp tsrqp

srqp = D . tsrqp = M
Der Zeiger ist hier wie in (121)

Die Entwickelung dieser Classen nach '(25,«) giebt 
ein Produkt nach dem andern, jedes folgende aus dem 
nachstvorhergehenden; die Anordnung nach (25, K) 
giebt jedes verlangte Produkt für sich, und man hat, 
wegen der Involution, nicht nöthig, die vorherge­
henden für die folgenden erst besonders abzusetzen (22)

123.

Beweis. Man findet «das Produkt qp, wenn 
man die einzelnen Glieder der Reihe q den einzelnen 

Älie- 
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Glieder von p nach und nach vorschreibt, und die so 
entstehenden Produkte zusammen addirt. Daraus fin­
det man weiter rqp, wenn man mit den einzelnen 
Gliedern von r und qp eben so verfährt, wie vorher 
mit den Gliedern von q und p u. s. w. Das ist, wenn 
man die einzelnen Dinge der Reihen p, q, r, 8... als 
Faktoren betrachtet, und die Produkte aus ihnen auf 
eben die Art classenweise sucht, wie in (25, », 0) 
die Variationen der gegebenen Elemente der einzel­
nen Reihen.

124.
Aufgabe. Es find mehrere Reihen 

1234 5»♦ ♦ *
a f bz czfl f dz3 •f’ ez4.». ss p 
A f Bz t Cza + Dz3 f Ez4 
ct j bz t (ze t t>z3 f ez4... css r 

U. f. W. f.
gegeben: man verlangt das allgemeine (n f i)te 
Glied der Produkte von Zwey, drey, vier....m die­
ser Reihen von den vorhergehenden niedrigern Pro- 
stuften und Gliedern unabhängig.

125.
Auflösung» Diese geben die Variationsclassen 

(44/ 55), nach ihnen ist
qp 1 rqp

(qp j 7 (n^l) css “*2ßz D; (rqp)?(tttI) n~3Czn 
srqp .. .tsrqp

(si-qp)l(nti) e= (... tsrqp)1(ritl)=±:*-«Mz*
(Der Zeiger ist hier, wie in 124)

Hier
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Hier giebt (44) eine Classe nach der andern, (55) 
jede für sich außer der Ordnung; nur muß man bey 
(5§) in die letzte Vertikalreihe die Buchstaben aus p 
(wie auch hier schon stehen), in die vorletzten Buch­
staben aus g in die darauf folgende die Buchstaben 
aus r u. s. w., das ist, eben dieselben Buchstaben dem 
Nahmen nach, als in (5$) bereits stehen, nur aus 
andern Alphabeten setzen (24). So wie in (55) inD 
gefunden worden, so kann man auch jede anders 
Classe sogleich finden.

126.

Beweis. Daß für ine (n i)tcn Glieder der 

Produkte gus Zwei, drei, vier... m Reihen immer z«- 
kommen müsse, ist für sich klar. Nun fangen die 
Verbindungen der Coeffizienten, bei zwei Reihen qp 

qp , rqp
von aB bei drei Reihen rqp von ’C, bei vier Reihen 

srqp
srqp von 4D an, und gehen bei ihnen die Summen- 
exponenten nach der Ordnung der natürlichen Zahlen 
fort, (ior). Folglich gehören für die (nf 1 ten Glie­
der der Produkte der Reihen, die Variationsklassen 
für die Coeffizienten und die Potenzen zn so zusam­
men, wie in (115) ist angegeben worden.

127.
Setzt man in die allgemeinen (n-fii)ten Glieder 

nach und nach n = o, 1, 2, 3, 4... so findet man. 
dieser Produkte einzelne Glieder nach der Ordnung
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qp qp qp qv
= 3 B t *ßx t ’Bz1 t ...

rqp rqp rqp rqp.
--- 3C f 4Cz t SCV f cCz3 ch...

srqp «rqp srqp srqp
s= 4 £> .r.I sDz t eDza f 7£>ZJ f ...

.. .tgrqp ... tsrqp ... tsrq .. .tsrpq
= mM f mfi Mz t wtiMz f ni+3Mz f ...

128.
Die Entwickelung von Produkten der Reihen 

solcher kombinatorischen Formeln (122, 125, 129) ist 
leicht. Die einzelnen Glieder derselben weit fortge*  
fetzt, findet man in Hindenburgs Tafel (Nov. 
Syst. Perm, p. LXIX. fep.) Ich habe hier für die Rei­
hen (124) die einfachsten in Abficht auf die Exponen­
ten gewählt, weil das für jede andern Exponenten 
hinreichend ist (139, 140). In der Hindenbürgischen 

eben angeführten Tafel sind für die Exponenten der 
1 in den Reihen die allgemeinen Progressionen

»/ »t3*/ u. s. w. gesetzt worden. Die 
Ursache, und von den Vortheilen einer solchen An­
nahme, sehe man Toepf. comb. Anal. Vorr. S. 
XI. — XIII. u. S. 162, 189.

129.
Aufgabe. Es ist die Reihe

a f bz "f*  C7.a f dx5 f ez4 f ... = p 
und die ganze positive Zahl m gegeben: man ver­
langt das allgemeine (n f i)re Glied der Potenz pul 
von den vorhergehenden Gliedern unabhängig.
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130
Auflösung. Sie ist in der Formel: 

pin 1 (n t 1) = m 
0 3 3
'a b c..V 

enthalten. Hier ist die Combinationsklasse m aus (46, 
55) mit der Versetzungszahl m verbunden (no).

iZt-
Beweis. Die Reihe p (129) mtnal gesetzt und 

in sich multiplizirt würde nach und nach alle Poten­

zen von p, bis mit der gesuchten mten geben. Wä­
ren nun die m Faktoren nicht (wie hier) einerley, son­
dern alle verschieden, wie p, q, r... in (124) so wäre 
das (hfi)te Glied ihres Produkts, das ist

. ..tsiqp
(.. t tsrqp) 7 (n f 1) =

Da über hier p s g ;= r =3 s s t = ,,, s^ 
kommen in ihrem Produkte Unter den Complexionen 
(Binionen, Ternionen, Quaternionen... mtionen) der 
Coeffizicnten der gegebenen Reihe, mehrere vor, die, 
der Zahl und Art nach eben dieselben, nur verschie­
dentlich versetzte Buchstaben enthalten, folglich (als 
Produkte derselben Faktoren, nur in verschiedner Ord­
nung und Lage) nicht verschieden sind. Diese dürfen 
also nur überhaupt gezählt, und ihre Zahl (die 
Versetzungszahl) den zruzehörigen Combinations- 
eomplexionen, welche die übrigen reprasenriren, 
nach der Erinnerung (no) beygefügt werden, dadurch 
verwandelt sich das obige m+nAf in m m+°M (wo nt 
die Versetzungszahl oder der polynomialcoeffizient dee 

Z 2 -in- 
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einzelnen Complcxionen der Combinationsklasss M ist,) 
und so kommt,

pn,7(n f i) = m 
mit dem Zeiger wie in (130),

13a.

Die einzelnen Glieder für pm nach der Reihe zu 
finden, darf man nur n = o, r, 2, 3, 4... nach ein­
ander fetzen. Das giebt:

pm — inmM + mnirIM'z ch n.lm4aMz*  + .... 
Daraus folgt m = 1,2,3,4... also M = a,b,c,d...

und m ----- a,b,c,d... nach und nach gesetzt:
p1 g ctrA f st2Az f rt3Az2 f a4AzT ch.,.
p2 g b2B t I>3Ez f b4ßz’ f bfBz1 f..’
p’ SS C3C f <4Cz t C?Cz2 f CffCz’ -f...

xl 234.x 
\a b c d..J

• *33-
Ich habe von den Combinationen in (46) hier 

(131, 132) nur die Classeninvolutionen ausgehoben, 
und die Versetzungszahlen a, b/ c... zu den einzelnen 
Classen gesetzt. In (46) werden die Classen, eine aus 
der andern hergeleitet. Wie jede Classe unabhängig 
(wre hier vornemlich verlangt wird) gefunden werden 
könne, zeigt (55) an dem Beyspiele von t0D ganz all­
gemein.

134.
Aufgabe. D^e Reihe (129).

a t bz t cz2 t dz3 f ez4 f .es p
auf 
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«uf die Potenz des Exponenten m zu erheben, die 
Zahl m mag eine ganze oder gebrochene, positive 
oder negative Zahl seyn.

IZ5-
Auflösung. Das erste Glied von pm ist a=» 

und das nf/)tc oder
pm 1 (r f i) = a*v\ f mSgam-Ä hvF £

m^am- 3 CnC ... f mJJ>am-n pnN)z”„
‘ ZI « Z 4 ' > 

kb c d e . V
Die hier gebrauchten Zeichen sind aus dem Bor-, 

hergehenden schon bekannt.

iz6.
Beweis. Man setze die Reihe (134) p = afz. 

Der binomische Lehrsatz giebt sodann für jedes m, 
pm = atn + Clm-1ZT *p>  m^am-22’ lli^am"3 2’.. 
Die Potenzen zT, z2/ zJ... giebt (132); darnach ist 

Z1 =7 stTÄzx f a2Az2 st’Az’ .. .ch auAzn ... 
Z2 = b2ßz2 f b3Bz3... "f bnBsn...
7? = C?Cz5.. ,f (nCzn ...

r 2 3 4 ...X 
kb c d e.. .y

(Man bekommt nemlich hier gleich in die ersten Glre^ 
der Potenzen von z die Potenzen zT, z2, zk.. weil 
hier Z =3 bz f cz°. . . gleich im ersten Gliede z 
hat, welches sich bey p a a f bz... in (132) 
anders verhält). Nimmt man nun alle Glieder irr 
denen zn verkommt mit den zugehörigen Vinomial- 
cocsfizienten und Potenzen von a (nach dem obigen 
vermittelst der Binomialformel ausgedrückten Werthe 
von pm) zusammen; denn diese machen mit einander 

das
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X 

das gesuchte (nfi)te Glied aus, am als das erste ge­
zählt: so erhält man die Formel wie sie in (135) sieht.

i37<
Die einzelnen Glieder für pm (13 t) nach dem 

ersten am zu finden, darf man nur in dem allgemei­
nen Gliede C135) nach und nach n --- cx, 2, 3, 4.., 
fetzen. Das giebt pm am

■f*  mUAM-r <xrAz^

f (m9(am-i aaA f mYam-r b^)z*
t (m5[am- X a3K f mBam-L b’ß f m@am-3C’c>*

sl 2 3 4...X
\h C d S.. >

rZS,
Ausgabe. Die Reihe

»fbfcf dfef ff p 
auf die Potenz des Exponenten m zu erheben.

139'
Auflösung,- 1) wenn m eine ganze positiv^ 

Zahl ist. Dann ist pmi(n f 1) = m 
also pm = ntmM t m ,ntiM 

f m m+sM... = m "M
und P*  = d$A f ct’A f ö’A f ct*A. ... L2 ctzA

P*  baß t t>?B t £>4ß t b$ß.... = b'ß

P$ --- c’c t c4c t crc t c°e.... — c'0
- - 2 I < £

(■ > M 5. X
>a b c d e..

2) wenn
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2) wenn m eine ganze oder gebrochene, pot 

sitive oder negative Zahl ist, so ist 
p'nl(n-j-i) = ms^am-a n'N

und pm = as’ fc'ßf m@am-s

CG f ♦ * ♦ • 
(b C d e f...)

140.

Bewels. So wie hie Reihe (129) sich in Me. 
gegebene (138) verwandelt, wenn man in jener z = 1 
setzt, eben so findet man durch diese Substitution in 
den Formeln (130, 132) mit Zuziehung von (no) die 
Formeln für (138, 1) und glcichergeftalt die, in (339, 

3) wenn man z == 1 in die Formel für pm (137) 
fetzt, und die Glieder, wie sie nach dem dortigen 
Ausdrucke senkrecht untereinander kommen, nach (in) 
summier, und durch <1% b'B, c'C...n'N ausdrückt.

141.
Hier (140) ist die Potenz m -er Reihen * f b f 

• d f... aus jener der Reihe a bzf cza tdz4f..' 
vbgeleitet worden. Man hätte jene, eben so wie die­
se ganz independent behandeln können, ich habe aber 
den eingeschlagenen Weg, der Kürze wegen, vorgezo- 
gen habe auch bei den Potenzen wie bey den Produk­
ten (228) die am einfachsten ausgedrückte Reihe a f 
bz t cz’... zum Grunde gelegt. Hh.denburgs For­
meln für Potenzen (Nov, Syst. Perm. p. Liv, 7, 8) be­
ziehen sich auf die am allgemeinste ausgedrückte Rei­

he (128)

T41.
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142.
Es ist nützlich die Vergleichung derLokalzeichcn 

für Potenzen mit den combinatorischen, etwas naher 
nachzuwersen, welches am füglichften durch die For­
meln ('Zo, 13«;) geschehen kann, bey denen, wenn 
man bloß die Koeffizienten ohne den Faktor 'zn be­
trachtet, der Lokalausdruck pm1(nf 1) jn pul % (n f 1) 
frch verwandelt.

143*
Daraus und aus (130) folgt für ganze positive

Zahlen m
pT *(nf  1) = slnt*A  
p2 *(n^  1) —

(nf f) --- c” t’C 
p4 * (nf 1) = d"^4O

P*  » (n t I) = (WE

pm <n f t) = mn+mM 
pm x(n—mfl)» m nM

3 4 5 6...X
c d e fM/

>44»
Eben so folgt aus (142 und 135) für jeden Werth 

von m
pm «1 sa™
pm * 2 — a1»-1 ct’A
pm x 3 =3 m^lam-I a’A f m$gaffl-2 ß'ß
Pm x 4 = rnUam-i a7A f m23am-» b’Bfm@am-3£’e-

f f f t t ,

c= (dem Coeffizienten von zn in 135) 
s' 1 2 3 4 5 . >

4 b c d e f,. V

Die
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Die in (143 und 144) unter den Formeln beygefüg­
ten Nachweisungen zeigen r) die Coeffizienten a,b,c... 
der Reihe p, und 2) was für Zahlen werthe denselben 

Classeneomplexionen zukommen.

Solche Vergleichungen der beyderley (lokal- und 
eombinarorischen) Zeichen und Formeln sind wichtig, 
weil jene, als Stellvertreter der letztem wegen ihrer 
signifikanten Kürze/während des Calculs, und selbst 
in den Formeln für die Endresultate häufig gebraucht 
werden. Sie knüpfen gleichsam das Band zwischen 

der gewöhnlichen und der eombinarorischen Analyfis, 
und man kann, wenn die Relation zwischen beyden 
gegeben ist, sogleich aus den Lokalausdrückeu in die 
eombinarorischen, und aus diesen in die der gewöhn­
lichen algebraischen Sprache übergehn. Von solchen 
Relationen für Potenzen, wie hier (Nov. Syft. Perm, 
p. Li. und die dortigen Exempel p. LL und tu.) für 
Produkte (Ebendgs. p. lii. Lii).

146.
Nun sey auch m in (144) eine ganz positive Zahl: 

so geben die beyden Werthe von pm - (n f 1) in 
(143/ 144 oder 135) einander gleich gesetzt, folgende 
Relation: •

M am-i ct“A f am-a g-, ß

t ®ga“-s cnG f..>
/I 2 3 5..A /IS 3 4 5..A

/ 'ab c d../ Vb q d e f...<

Dir-
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Die Glieder rechter Hand brechen mit demjenigen 

ab, wo zuerst die Zahl des Binomialcoeffizienten 
so groß, wie »n oder die Klasse so groß wie n ist. Die 
fe Formel giebt einzelne höhere Classen der Po­
tenzen, durch Summen von niedrigern Classen. 
Auf ähnliche Art hat sie Hindenburg bereits (Nov. 
Syft. Perm. p. lv. 9) hergeleitet. Man vergleiche 
hier (102).

147.
Die Buchstaben m, m, M bestimmen einander 

dergestalt, daß ein Werth des einen die ähnlichen 
Werthe der beyden andern festgesetzt. Hier mögen 
Zahlenwcrthe für m angenommen, die Werthe der m 

und M bestimmen.
Für m—i wird A=’^a'’önA

- m=2 - b^r L—'A^a»EBLObn8
- m=3 ? cnf3 L--:'Aa^a"EBa^b''L-f-'CÄ°c"Q
- m=4 - d"j4 O^AA'a°EBa^bnL-d^Da°d"O
; m—) - en+f E^Aa^a"A'l^Ba'b"L^^EÄ'' e"L

Eben so lassen sich Werthe für n bestimmen (Nor.

p 2 3«1 P 2 3 4 -1
La 0 c... J La b c d...J

Syst. Perm, p, LVi 10.)
Für n’5E wäre n =5 io# also käme

(V 2 Z.
\a b ct
Man vergleiche (6o. S. zy6) und das Exempel (Nor.

Syst, Perm, p. LVL, II.

»48
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148.
5ehrsatz. Aus den Reihen p, q, r, s.,, (122);

Potenzen^ nach der Ordnung, 
pa — pa»i pa^z1 ’s*  pa«3z2 pa*4z 3...
qb ~ qb»i qt>x2z’ qbx}za qb*4z 1..,
rc = rcxi rc%2zT rcx3z9 ‘j* rc«4Z?...
sd = sdxl sdx2zr sd»3za sdx4z’...

folgt das allgemeine (n't i)re Glied,
I. Für das Produkt aus zwey Potenzen. 

qbpa
(qbpa)7(n t I) =

wenn man in dem allgemeinen Gliede, o, r, 2, Z... 
nach und nach für n setzt.

qbpa qbpa, < qbpa qbqa
also qbpa ss aB f 3B f 4Bz2 f *B1’ t“»

1 2 3 4
/p«xl pa «2 P”1? P"M->
\qbx I qb x 2 qb »3 qb$6 4» ♦

II. Für das Produkt aus drey Potenzen. 
rcqbpa 

(rc qb pa) 7 (n f l) s ”+3Czn 
rcqbpa rcqbpa rcqbpa rcqbpa • 

also rcqbp*  = 3C f 4Cz f !Cz*t  cCz3 f...

wenn man in dem allgemeinen Gliede o, I, 2, 3 nach 

und mach für n setzt.

1 2 3 4
"pa X I pax2 P°x3 pa*4
qb x I • qbx2 qbx3 qb*4
je«1 rcx2 rc*3 rc»4

III.
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iil Für das Produkt aus m Potenzen.

i S^i^q'^p3
(. ..sdrcqbpa)7(n f i) ss

... s^rcqbp“ ...s^rcqhpa ...s^rcqbpa 
. ..S’Vqhpa = f mTTMz f f.. >

/2)ct Isrger enthalt die Coessizienten nach der Ordnung^
X aller m. Potenzrerhen/ .wie sie in (148) stehen )

Auch hier kommt der Ausdruck für die einzelnen 
Glieder aus dem allgemeinen, wenn man 0, 1,2, z... 
nach und nach für n setzt.

149.
Beweis. So vielfach, und zusammengesetzt der 

Lehrsatz (148) auch an sich ist, so leicht ist gleichwohl 
der kombinatorischen Beweis desselben hier an dieser 
Stelle.

Daß die Variationsklassen B, C... M kommen 
müssen, erhellet daraus, daß zwey, drei... m Reihen 
(wie hier in 448) in einander multiplizirt, alle B v 
nionen, Ter ni0ncn^... mti0nen ihrer Coeffizien- 
ten geben (rsa, izi) und weil diese (nach dem Zei­
ger) alle von 1 an nach der Ordnung gezahlt wer­
det, so fangt B mit dem Summenexponen 2 
und C mit 3... und M mit m an, und gehen die­
selben nach der Ordnung der natürlichen Zahlen fort. 
Daher für die (n f ,)ten Glieder oder Coeffizienten 
nothwendig »fsc... ntmM kommen müssen. 
Der Fortgang für die Potenzexponenten o, 1,

3....  von z- ist für sich klar, und fo kommt überall 
zu für die (n f i)ten Glieder. Die beygefügten Zei­

ger anlangend, so darf man darinnen pa%r, pa»2...

qbx' ,
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qM, qM... rr. s. w. als bekannt voraussetzen, wett 
dieReihenp,qzr,s gegeben find und nachHindenburgs 
(lokal - und combinatorischen) Potenzformeln die 
p»X (n f 1), qbx(n f l) U. f. W. durch p--(n f ]), 
q»(n t I) u. s. w. sich ausdrücken lassen. Die Con- 
ftruktion der Variationsklassen mittelst der beygefüg- 
ten Zeichen, hangt von Tab. IV. (Nov. Syst. Perm. p. 
LX) ab, in so fern man sich die Complexionen nach 
(20, 25) nicht selbst machen will.

Auf dieser und ähnlichen Voraussetzungen Hern- ' 
hen die so nützlichen Reduktionen der Probleme auf 
einander, der zusammengesetztern, auf die einfachern, 
davon Herr Prof. Pfaff in seinen beyden Abhand­
lungen (D e r p 0 l y n. 8 e h r s. iv.v.) eine Menge interes­
santer Beyspiele gegeben hat, die ohne dem Ge­
brauch der Lokalausdrücke zum Theil auf ausseror- 
dentliche Verwickelungen geführt haben würden.

150.
Die Ausdrücke (148, i- — in. für ganze Glie­

der 1 (n ch 1) verwandeln' sich sogleich in solche 
für einzelne Coeffizienten * (n 1); wenn 
man dort z = 1 setzt, wo also z und alle Potenzen 
von z ganz wegfallen, und nur die Variationsklassen 
allein, mit ihrer Summen - und Reihenexponenten 
übrig bleiben. 1

151.

Aufgabe. Den Werth, von (rcqbpa) x 3 
Coeffizienten, der einzelnen Potenzen pa,.qb, rc aus- 
zudrücken. Die Reihen p, q, r stehen (124).

158.
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Auflösung. In (148. IL) setze man n = 2, 
k = i und (150) * statt 3, so findet man

rc qb pa 
(rcqbpa) » (2 f Ü = SC

das giebt nach dem Zeiger (148, II.). Die Comple- 
pionen selbst gemacht, oder nach Tab. IV. (Nov. Syft. 
Perm. p. LX) und den dort überschriebenen Reihenex­
ponenten r, q, p, angeordnet

rc qb x[ pa xj rcx2qbxipax2
rc xi qb x2 pa -- 2 rc *2  qbx2 pa *[
rc»s qb xj pa xi rcx3qbxlpaxs

W0 man rcxi und rcx2 als factores commuties in die 
zugehörigen Nebenfaktoren nehmen, oder jede andere 
aus den übrigen dazu wählen kann, diejenigen nem- 
lich, die am meisten zusammengesetzt sind. Ein ande­

res Beyspiel für den nächstfolgenden Coeffizienten 
(rc qh pa) ^4, steht im Archiv der Mathem. (H. II 
S. 2:7.) Der hiesige Lehrsatz (148) mit seinem Be­
weise (149) ist nemlich bereits dort, etwas ausführ­
licher, zugleich mit Anwendung auf gebrochene Funk­
tionen, vorgetragen worden.

rzr.
Auf der diesem Werke beygefügten Tafel, habe ich 

die am allgemeinsten ausgedrückte Reihe
p —3 azm b£m+d f czihi-2d zur rten Potenz 

erhoben, und vollständig bis auf 12 Glieder entwickelt, 
m, äundr können hier jede positve, negative gan- 
z e und gebrochene, irrationale oder unmögli­
che Zahlen seyn, Daß aber die dafür auf der Tafel 

angegebene combinatorisch - analytische For­
mel richtig sey, erhellet so:

X ' „ 153*
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Man setze in der Formel für 9(152), xd = y; so ver­
wandelt sich P in (a f by t cy2 t dys 

mithin
pr = (a t by t cy9 + dy3 f...)r.zrm 

also ist die Potenzierung von pr (in 152) auf jener (in 
137) zurückgeführt. Setzt man daher nach der Entwi­
ckelung y = zd, so hat man vollkommen die Formel so, 
wie sie auf der Tafel angegeben ist.

154»
Da irf? die höchste Allgemeinheit des Binomischen Lehr­

satzes, hier voraussetze, so bedarf es weiter keine Recht­

fertigung, für negative, irrativnale, veränder- 
l i ch e, und unmögliche Exponenten. Ich will da­
her um die A l l m a ch t der c 0 mbinat 0 rischen An a- 
lysis recht ins Licht zu setzen, im folgenden § nach das 21 sie 
Glied von pr(i§2) vollständig entwickeln. Jedes andere 
nicht kombinatorisches Verfahren, würde die vollständige 
Entwickelung der 20 vorhergehenden Gliedern vorausse­
tzen. Auch des Herrn E t a t s r a t h T e t e n s ©ai b ft i tu- 
tions-Verfahren, ist noch so weitläuftig, daß es 
ausidiesen Wegen so gut wie unausführbar ist. Es giebt lei­
der in diesen Zeiten genug Menschen, welche bey einigen 
geringen unverdauten mathematischen elementarKennt- 
nissen, ihre Unverschämtheit soweit treiben, über Sachen 
abzusprechen von der sie doch nichts weiter als den Nah­
men wissen. —Für diese habe ich zum Theil dieEntwicke- 
lung des 2iten Gliedes unternommen. —- Sie mögen ihre 
gerühmte Stärke in der Analysis daran versuchen — lei­
sten sie auf andern Wegen eben so viel, so will ich der er­
ste seyn, der ihre mathematischen Kenntnissen Gerechtig­
keit wiederfahren läßt, von denen sonst ihre compilirten 
Schriften keinen vortheilhafren Begriff giebt.
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I2b2dq 
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daraus folgt nun daß 

prx2i=-—die ganze Summe r grin oci
aller folgenden Theile gleich ist. 
4-rA«r-l v ,-f-r^Är-3l 3^?
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2ob’cq 
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20b3 fn 
20b3 gm 
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6ob2cen 
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4-r@ar"7^ 42obc4d2h
840bc3deg 
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72bc?f 
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Druckfehler.

In der Tabelle, muß im pT?3, 3b‘9f statt 2b2s stehen
Pr7i2, 3der - 3d2g

$. 3de9 - 6di?f
- - iob'-'d3 - icbjc3

Im Buche
eite 12 Z. 5 v. u. lies 4 statt 4
f 99 Z.HÜ. 4 v. II. lies memöires de FAcadernie des 

Sciences. Paris 1772.
- 156 $. 2 u. 3 muß überall « statt %
- 178 §. 2i. lies Folgenden
- 213 ist in der Formel für? bey »A die linke Klam­

mer vergessen

216 §. 1 lies 2° =
n41.11*1*2.».  2n—?. 2n

1.3. ..2n—1.
Seite 220 lies Klügel.
Diese wenigen Fehler habe ich bey einer fluchtigen 
Durchsicht gefunden, sollten, wie es leider bey einer 
Schrift mit so vielen Zeichen nicht zu vermeiden.ist, 

noch welche von Erheblichkeit stehen geblieben sind, 
so werde ich solche bey nächster Gelegenheit bekannt
machen.
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Allgemeine PoLenzlnuigsformel.
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Erklärung einiger

We 
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combrnatorisch - analytische Formel
Przz arznn+W’1 a 'Az™!^ W-1 aaA | - d-pw1 a ’ A

+W3b3Bj ‘ ----------

Znnfrd^_r^str-X . g

i/ r^/ r^/ ''C, . . . rM . . . rN . . . sind hier zum Potenzexponenten r gehörige Binom ial-Coeffizienten, und zwar nach der Ordnung wie sie hier stehen, der ote, ifte, 2te, gte...mte...nte; wo also r9^ =  ----------- ——-—-— n

« und 1, sind bloße Zeichen wie <, log. das erstere dient die Stellen der Coeffizientey, das andere die Stellen der Glieder nachzuweisen; so heißt p’XnfiXMad; der (nfi)te Coeffizient von pr multiplizirt in sr,r+nd. Dieser (nfi)te Coessizient kann selbst wieder aus einer Menge Par- 
tialproducte bestehen, wie man aus dem (nfi)ten Gliede, der combinatorisch - analytischen Formel für pr deutlich siehet; dieses (nfi)te Glied giebt man nun in Lokalzeichen so an: pr7(nfi) und ist = pr<n-fr)zrin+nd. Der Zeiger zeigt an, was man für Dmge oder Elemente, zu 1, zu 
2, zu 3 ♦ *: zn n combiniren soll, die Combinationen zu 1 werden überhaupt durch za, die zu 2 durch ZB, die zu 3 durch ZL.... die zu n durch ZN angedeutet, und heißen ifte, 2te, gte... nte Classe. 11N aber bedeutet nicht bloß die nte Combinationsklasse, jondcrn verlangt überdies, daß wenn 
man in dicjer Classe, für jedes Element die im Zeiger ihm entsprechende Zahl setzt, daß alsdenn die Summe jeder einzelnen Verbindung (Cvmplexion) zu n Elementen, gerade n betrage; bei) ''L zeigt demnach der Summenexponent 5 an, daß die cunime jeder Cvmplexion der dritten 
Classe 5 betragen soll, der vor diesen Classenzeichen Links stehende gleichnahmige kleine deutsche Buchstabe zeigt an, daß man vor jeder Cvmplexion der zu ihm gehörigen Classe ihre Versetzungszahl (Polynomialzahl) schreiben soll. Ein Ausdruck in combinatorischen Zeichen wie 
dieser iinN, zeigt an daß man die nte Combinationsclasse zur Summe n entwicheln und vor jeder einzelnen Cvmplexion die Versetzungszahl vorschreiben soll.
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